ECM group

November 17, 2005

Peter Van Alyea Redwood Oil Company 455 Yolanda Ave., Suite 200 Santa Rosa, CA 95404

Re: Revised FS/CAP

7716 Old Redwood Highway

Cotati, CA

Dear Mr. Van Alyea:

ECM Group has prepared this revised Feasibility Study/Corrective Action Plan (FS/CAP) for above referenced site (Figures 1 and 2, Appendix A). A Corrective Action Plan (CAP) was prepared for the site in April 1998. A CAP addendum was prepared in November 1999. As requested in a letter dated July 6, 2005 from the Sonoma County Department of Health Services, this revised FS/CAP includes: all additional data collected since the 1998 CAP; updated estimates of soil and groundwater contamination; and a new feasibility study. All site data for soil is included in Tables 1 through 3 (Appendix B). All site data for groundwater is included in Tables 4 through 6 (Appendix B). Locations of all investigative borings and monitoring wells, and current station configuration is shown on Figure 2 (Appendix A). Station configuration prior to station remodeling in 2000, and sampling locations from the 1999 UST removal, are shown in Figure 3 (Appendix A). Sampling locations from the 1999 on-site soil characterization study are shown on Figure 4 (Appendix A). Excavation Boundaries and sampling locations from the 2000 remedial soil overexcavation are shown on Figure 5 (Appendix A). Updated estimates of contaminant mass in soil and groundwater are provided in Calculations 1 and 2 (Appendix B).

SES, 1998, Corrective Action Plan, Redwood Oil Service Station, 7716 Old Redwood Highway, Cotati, California, Sierra Environmental Services, April 13, 1998, 29 pages and 6 appendices.

ECM, 1999, Corrective Action Plan Addendum, Redwood Oil Service Station, 7716 Old Redwood Highway, Cotati, California, November 16, 1999, 8 pages and 5 appendices.

SITE HISTORY

The following site history was obtained from Redwood Oil Company files and ECM project files. The station property and operations were purchased by Redwood Oil Company on January 1, 1979 from Mr. John Gantner. The history of the station prior to 1979 is not available for inclusion in this report. The piping at the station was replaced in 1981 when the station was remodeled.

In January 1990, new product lines and tank overspill protectors were installed at the site. Samples were collected from the soil generated during the renovation. Hydrocarbons as gasoline and BTEX were detected in seven soil samples at concentrations up to 5,700 parts per million (ppm) and 430 ppm, respectively.³ Sonoma County Department of Health Services (SCDHS) personnel were present during the renovations and subsequently filed an underground Storage Tank Authorization Petroleum Release Report.⁴

A soil vapor survey was completed at the site on November 13 and 14, 1990.⁵ Up to 580 ppm and 390 ppm volatile hydrocarbons were detected, approximately 3 ft below ground surface (bgs), near the pump islands and the underground fuel tanks, respectively.

On September 18, 19, and 20, 1991, Soils Exploration Services of Vacaville, California installed three onsite monitoring wells (MW-1, MW-2, and MW-3).⁶ The monitoring well locations are

NET Pacific, Inc., 1990, Laboratory Analytic Report Log No. 9343, for Redwood Oil Company, Santa Rosa, California, January 18, 1990, 3 pages.

Sonoma County Environmental Health Department, 1990, Unauthorized Petroleum Release Report filed by Alex Schneider, SCEHD, for 7716 Old Redwood Highway, Cotati, California, January 12, 1990, 1 page.

Earthtee, Itd., 1991, Consultants Phase I Environmental Assessment, 7716 Old Redwood Highway, Cotati, California, prepared for Redwood Oil Company, February 11,1991, 4 pages and 1 appendix.

Sierra Environmental Services, 1992, Subsurface Investigation Report, 7716 Old Redwood Highway, Cotati, California, prepared for Redwood Oil Company, January 16, 1991, 16 pages and 5 appendices.

shown on Figure 2 (Appendix A). Analytic results for soil are included in Table 3 (Appendix B).

On April 20, 1992, Sierra Environmental Service (SES) personnel visited the site to sample an off-site domestic well located east of the site in a vacant lot.⁷ An attempt was made to sample this well. The well was gauged to a depth of 180 feet below grade, but water was reportedly not present in the well.

On October 14 and 15, 1993, SES conducted a subsurface investigation at this site.⁸ Thirteen soil borings were installed (G-1 through G-13). Ground water samples were collected from the borings. Shallow ground water was encountered in the borings at approximately eight ft bgs. Analytic results for ground water are included in Tables 5 and 6 (Appendix B). Analytic results for soil from G-5 and G-6 are included in Table 3 (Appendix B).

Free-phase petroleum hydrocarbons were detected in on-site monitoring well MW-1 on March 28, 1996. A product line leak was detected on July 9, 1996 by Petroleum Maintenance Company (PMC) personnel and the product line was subsequently shut down pending line repairs. The product line leak was repaired on August 15, 1996 by PMC. Free-phase petroleum hydrocarbons were detected in on-site monitoring well MW-2 on September 26, 1996. SES installed passive product skimmers in monitoring wells MW-1 and MW-2 on October 8, 1996.

On February 9, 1998, SES conducted an additional subsurface investigation in order to further define the extent of hydrocarbons in soil and ground water in off-site areas to the northeast of the site. Two borings (G-14 and G-15) were installed (Figure 2 Appendix A). Analytic results for

^{7 1992,} Sierra Environmental Services, Site Update Letter, 7716 Old Redwood Highway, Cotati, California, prepared for Robert Swift, Sonoma County Health Department, June 25, 1992, 1 page.

Sierra Environmental Services, 1993, Subsurface Investigation Report, 7716 Old Redwood Highway, Cotati, California, prepared for Redwood Oil Company, November, 19, 1993, 8 pages and 4 appendices.

⁹ SES, 1998, Corrective Action Plan, Redwood Oil Service Station, 7716 Old Redwood Highway, Cotati, California, Sierra Environmental Services, April 13, 1998, 29 pages and 6 appendices.

ground water are included in Tables 5 and 6 (Appendix B). Analytic results for soil are included in Table 1 (Appendix B).

UST Excavation And Remedial Soil Overexcavation

A Corrective Action Plan (CAP) was prepared for the site in April 1998.¹⁰ A CAP addendum was prepared in November 1999.¹¹ On June 25, 1999, four USTs were removed from the site.¹² The former UST pit was excavated to a depth of 13 ft bgs. Soil sampling data from the UST excavation is tabulated in Table 1 (Appendix B). Soil sampling locations are shown in Figure 3 (Appendix A).

In October 1999, in preparation for a remedial soil overexcavation, 15 soil borings (B-1 through B-15) were installed at the site. Boring locations are shown in Figure 4 (Appendix A). Laboratory analytical results are tabulated in Table 1 (Appendix B). Boring results are summarized in the November, 1999 CAP Addendum. Excavation limits were proposed in the CAP Addendum based on analytical results from B-1 through B-15. Proposed excavation limits are shown on Figure 4, Appendix A.

In January and March 2000, approximately 2,200 cubic yards of soil impacted with petroleum hydrocarbons were excavated from the site.¹³ Laboratory analytical results are tabulated in Table 2 (Appendix B). Soil sampling locations and excavation boundaries are shown in Figure 5

SES, 1998, Corrective Action Plan, Redwood Oil Service Station, 7716 Old Redwood Highway, Cotati, California, Sierra Environmental Services, April 13, 1998, 29 pages and 6 appendices.

ECM, 1999, Corrective Action Plan Addendum, Redwood Oil Service Station, 7716 Old Redwood Highway, Cotati, California, November 16, 1999, 8 pages and 5 appendices.

ECM, 1999, UST Removal Summary Report, Redwood Oil Service Station, 7716 Old Redwood Highway, Cotati, California, August 10, 1999, 4 pages and 3 appendices.

ECM, 2000, Remedial Soil Excavation Report, Redwood Oil Service Station, 7716 Old Redwood Highway, Cotati, California, April, 3, 2000, 4 pages and 3 appendices.

(Appendix A). Soil from the area labeled 'New UST Excavation' was excavated to a depth of 18 ft bgs. Soil from the remainder of the excavation was excavated to a depth of 8 ft bgs.

Monitoring wells MW-1 and MW-2 were destroyed due to remedial excavation activities at the site. On March 20, 2001, two onsite monitoring wells (MW-1A and MW-2A) were installed at the site (Figure 2, Appendix A). The wells serve to replace monitoring wells MW-1 and MW-2.¹⁴

Investigative Activities Since the 2000 Remedial Overexcavation

On April 19, 2000, ECM installed two soil borings (G-16 and G-17) and one monitoring well (MW-4) at the site (Figure 2, Appendix A).¹⁵ On October 16, 2002, two additional monitoring wells (MW-5 and MW-6) and one CPT boring (CPT-1) were installed at the site (Figure 3, Appendix A).¹⁶ On October 16 and 17, 2003, one off-site and two on-site CPT borings (CPT-2 through CPT-4) were installed at the site (Figure 2, Appendix A).

Four monitoring wells (MW-7A, MW-7B, MW-8A, and MW-8B) were installed in April, 2005 to investigate the vertical extent of impacts at the site. MW-7A and MW-8A were screened between approximately 45 ft and 55 ft bgs. MW-7B and MW-8B were screened between approximately 65 ft and 75 ft bgs. Well construction details, with exact screen intervals, are presented in Table 4 (Appendix B). Laboratory analytical results are tabulated in Tables 5 and 6 (Appendix B).

ECM, 2001, Well Installation Report, Redwood Oil Service Station, 7716 Old Redwood Highway, Cotati, California, May 24, 2001, 11 pages and 5 appendices.

ECM, 2000, Subsurface Investigation Report, Redwood Oil Service Station, 7716 Old Redwood Highway, Cotati, California, June 13, 2000, 11 pages and 5 appendices.

ECM, 2002, Subsurface Investigation Report, Redwood Oil Service Station, 7716 Old Redwood Highway, Cotati, California, December 12, 2002, 12 pages and 7 appendices.

Site wells are currently monitored on a quarterly and semi-annual basis. Historic ground water level data is included in Table 4 (Appendix B). Analytical data for soil samples collected from MW-5 and MW-6 is included in Table 3 (Appendix B). Cumulative analytical data for groundwater is included in Tables 5 and 6, (Appendix B).

The Shell Service Station located across Old Redwood Highway from the site (Figure 2, Appendix A) is also a hydrocarbon release site. Plumes from the two sites are comingled.

Topographic and Geologic Setting

The site is located in the southern portion of the Cotati Valley, in the city of Cotati, Sonoma County, California. Land uses on adjacent properties in the site vicinity are commercial, retail, and residential.

The surface elevation of the site is approximately 100 ft above mean sea level. The topographic gradient in the site vicinity slopes gently toward the north-northwest. The closest surface water is an intermittent creek which flows from southeast to northwest approximately 1,000 ft northeast of the site. The creek flows into Laguna de Santa Rosa. The depth to ground water at the site is generally 5 to 9 ft below grade.

Groundwater elevation maps for the past three years have been compiled in Appendix C. Groundwater flow direction is variable but is most often to the east and southeast. An examination of the groundwater elevation maps shows that groundwater flow at the site is complicated by the large quantities of backfilled gravel in the excavation pit on this site and on the Shell Service Station site adjacent to the site.

CONCEPTUAL SITE MODEL

The 2000 remedial excavation removed impacted soil to a depth of 8 ft bgs, the approximate depth to water at the time of the excavation. During the 1999 UST removal, soil from the former UST pit was excavated to a depth of 13 ft bgs. In the area where the new USTs were installed, soil was excavated to a depth of 18 ft bgs. (Figure 6, Appendix A). Sample results indicate that a substantial quantity of contaminated soil remains in the saturated zone. Based on sidewall samples from the excavation and on samples collected from beneath the dispenser islands during UST removal, it appears that a relatively small amount of impacted soil was left unexcavated in the unsaturated zone along the west side of the excavation. Figure 7 (Appendix A) shows excavation boundaries with respect to current station configuration.

An estimate of contaminant mass in soil is provided in Calculation 1 (Appendix B). Based on the assumptions outlined in Calculation 1, it is estimated that a contaminant mass of between 4,500 kg and 14,500 kg remains in site soil. Of this mass, most remains in the saturated zone.

Historical site data for groundwater is tabulated in Tables 5 and 6 (Appendix B). Trend graphs for gasoline and MTBE for MW-1/1A, MW-2/2A, and MW-3, for the time subsequent to the excavation, are provided in Graphs 1 through 6 (Appendix A). Trend graphs show a declining trend for gasoline and MTBE in MW-1A and MW-2A, both of which are located in the excavated zone. High concentrations of gasoline and MTBE remain in MW-3, which is located outside the excavated zone. Declining trends in MW-1A and MW-2A, combined with data from MW-3, indicate that the excavation removed soil which acted as a secondary source for groundwater contamination.

Data from recently-installed MW-7 and MW-8 document that significant impacts to groundwater extend vertically to the 55 ft - 65 ft bgs zone. Logs for the MW-7 and MW-8 indicate that there is no impermeable aquitard separating shallow groundwater from deeper groundwater. Soils

underlying the site are composed of low permeability formations interspersed with higher permeability formations, with hydrologic communication and connectivity between shallow groundwater and deeper groundwater (to a depth of 70 to 80 ft bgs). Depth to water in MW-7 and MW-8, screened at depths of approximately 45 to 55 ft bgs and 65 to 75 ft bgs, do not differ markedly from depth to water in existing wells MW-1 through MW-6.

An estimate of contaminant mass in groundwater is provided in Calculation 2 (Appendix B). Based on the assumptions outlined in Calculation 2, it is estimated that a contaminant mass of 32 kg is associated with the groundwater plume at this site.

REVISED FEASIBILITY STUDY

The CAP considered the following remedial options:

Soil Vapor extraction coupled with groundwater extraction and filtration.

Soil excavation coupled with groundwater extraction and filtration.

Soil excavation coupled with passive remediation.

The 1998 CAP recommended Option 2 (soil excavation coupled with groundwater extraction [GWE]) as the most technologically feasible and cost-effective remedial alternative for the site. Extensive excavation activities occurred in 2000. Since then, concentrations in onsite monitoring wells have declined for gasoline and MTBE in MW-1A and in MW-2A. (Graphs 1 through 6, Appendix A).

This feasibility study will examine the following alternatives for continued site remediation:

1.) Groundwater extraction

- 2.) Remediation by Natural Attenuation (RNA)
- 3.) Dual-Phase Extraction (DPE): i.e. removal of soil vapor and groundwater

Option 1: Groundwater Extraction (GWE)

GWE was described in the CAP and recommended as a follow-up to soil excavation. It has been noted by the Lawrence Livermore National Laboratory (LLNL) report, as well as by other sources, that GWE is ineffective as a clean-up method for petroleum hydrocarbons. However, GWE is effective at plume migration control. GWE would also prevent further vertical migration of contaminants to deeper zones.

Option 2: Remediation by Natural Attenuation (RNA)

RNA (or passive bioremediation) is also discussed in the CAP. To evaluate the probable success of RNA as a remedial technique, fate and transport modeling was performed using BIOSCREEN, a public domain contaminant modeling program published by the EPA.¹⁷ Site model parameters for monitoring well locations, contaminant concentrations, soil density, permeability, porosity, hydraulic gradient, hydraulic conductivity, and others, were colleted from the site database or taken from reference values. The model predicts groundwater contaminant levels in groundwater versus distance from the site, using time projections. For the purpose of the modeling, concentrations from MW-3 (source area well) and MW-6 (most distant downgradient monitoring point) were used. Modeling Results, including a detailed summary of input parameters, are shown in Appendix D. Thirty and fifty year projections predict no significant additional decline in hydrocarbon concentrations in water in onsite wells, as hydrocarbons are gradually released from soil. Using the most likely degradation scenario, shape and size of the plume are predicted

US EPA, 1997, BIOSCREEN, Groundwater Contamination Natural Attenuation Model, Version
 1.4, a Public Domain Modeling Software

to expand somewhat over a fifty year period (i.e. concentrations in downgradient wells may be expected to rise somewhat over time).

Option 3: Dual-Phase Extraction (DPE)

A DPE system would consist of either: a high-vacuum blower which would extract groundwater and soil vapor simultaneously; or of a combination of pumps to extract groundwater, and a blower to extract soil vapor. In either case, since most of the remaining impacted soil at the site is in the saturated zone, groundwater extraction would lower the water table in order to make soil vapor extraction a viable option.

Prior to implementing this option, it would be necessary to conduct a pilot test. The pilot test would assess the viability of DPE as a remedial option. If DPE were selected as a remedial option, the pilot test would provide data which would be used in the construction of a DPE system.

Costs of Options 1 through 3

Costs for Option 2 would be limited to the costs of continued monitoring. Costs for Option 1 (GWE) and Option 2 (RNA) cannot be assessed until a pilot test has been completed. In general, costs for infrastructure and construction of a DPE or GWE system at a site of this size may run between \$150,000 and \$300,000, with annual operation and maintenance costs between \$20,000 and \$40,000 annually.

Selection of Preferred Remedial Option

Option 3 (DPE) has been tentatively selected as the most technologically feasible and cost effective remedial option at the site, pending the results of a DPE pilot test. RNA, or GWE as a

stand-alone measure, would not be likely to lower contaminant concentrations at the site in a timely manner. RNA would fail to prevent offsite migration of additional contaminants.

A DPE pilot test would require the installation of an extraction well. A mobile, high-vacuum DPE unit would be used to conduct the pilot test. A workplan for a DPE pilot test, including installation of the extraction well, will be submitted under separate cover. The DPE pilot test will also supply data to evaluate the use of GWE as a stand-alone technology. If the pilot test results show that DPE is not technologically feasible or cost effective, GWE may be reconsidered as a means of plume migration control.

Thank you for allowing ECM to provide environmental consulting services to Redwood Oil Company.

This report and its contents were prepared for the exclusive use of the client. No portion of this report or its contents may be used or relied on by any persons or entities other than the client. No warranty is expressed or implied, and any and all third party reliability is prohibited.

Sincerely, ECM Group

David Hazard Staff Scientist

Jim Green

Professional Engineer #C58482

Revised FS/CAP 7716 Old Redwood Highway, Cotati, CA

Page 12

Attachments: Appendix A - Figures

Appendix B - Tables, Graphs, and Calculations Appendix C - Groundwater Elevation Contour Maps Appendix D - BIOSCREEN Modeling Results

cc: Darcy Bering, SCDHS

APPENDIX A FIGURES

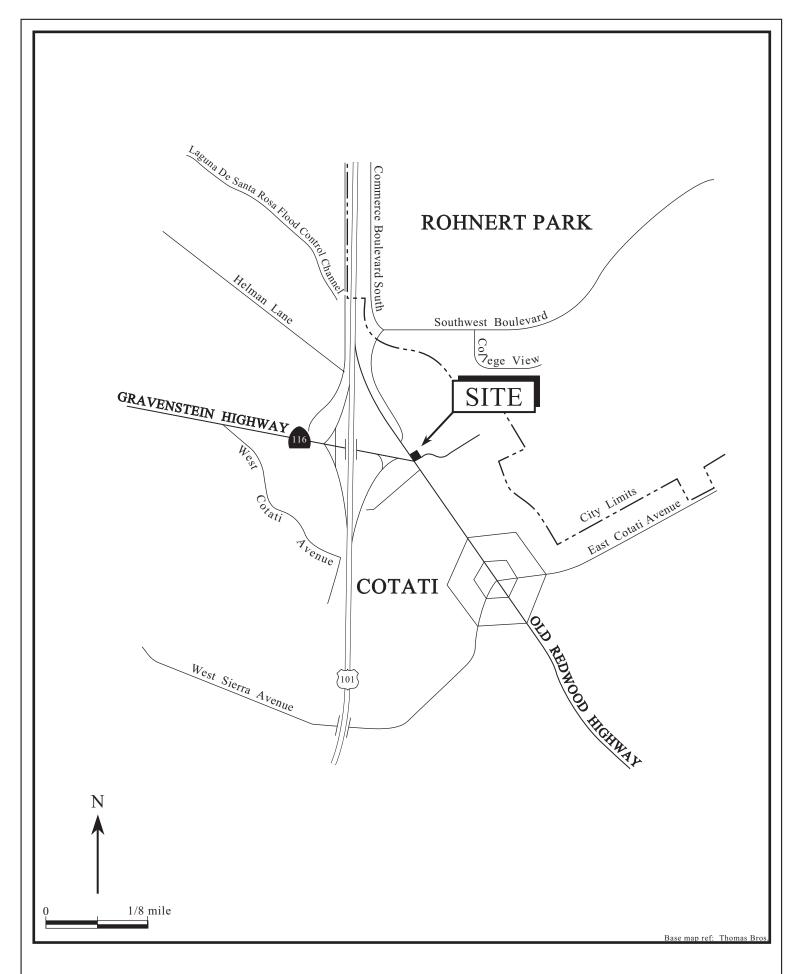


Figure 1. Site Location Map – Redwood Oil Service Station #102, 7716 Old Redwood Highway, Cotati, California

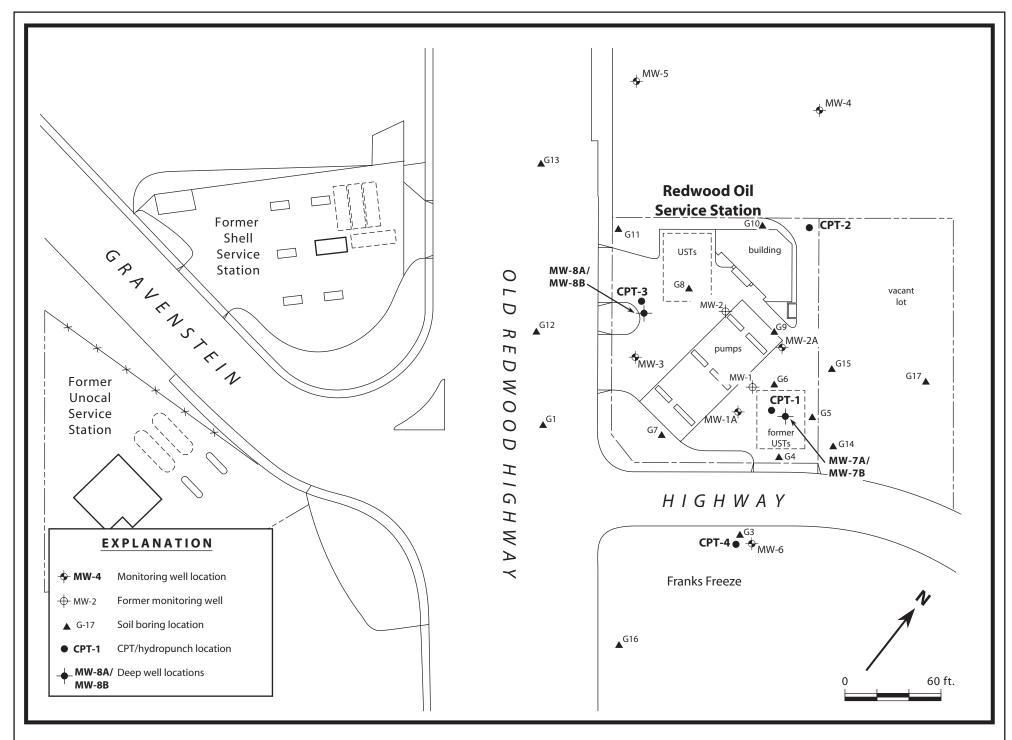


Figure 2. Monitoring Well, Soil Boring and CPT Locations - Redwood Oil Service Station #102, 7716 Old Redwood, Cotati, California

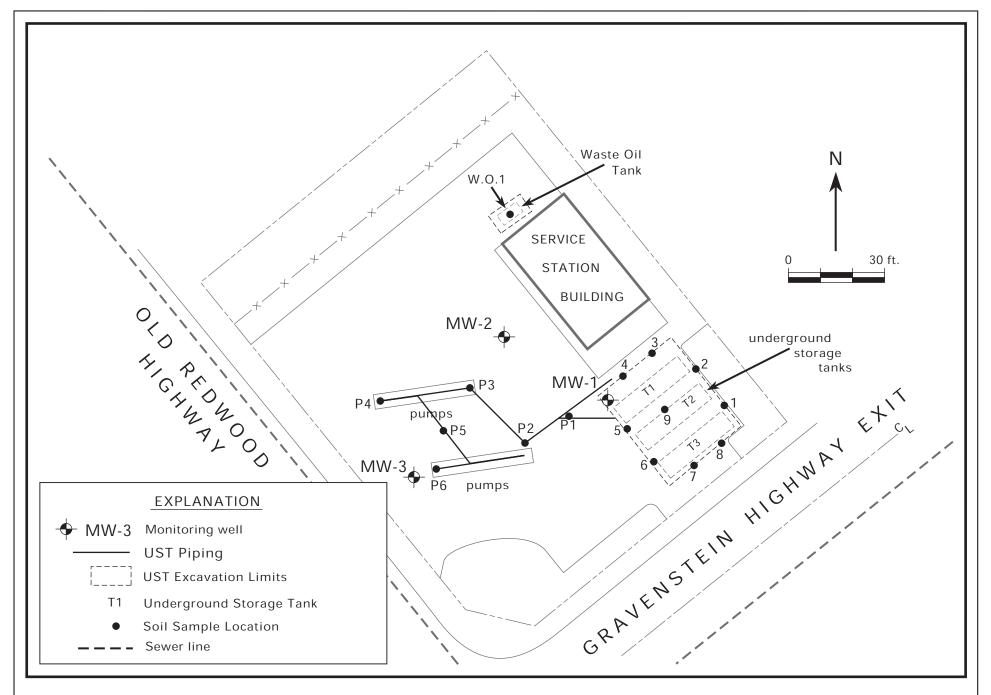


Figure 3. Underground Storage Tank Excavation - Redwood Oil Service Station #102, 7716 Old Redwood, Cotati, California

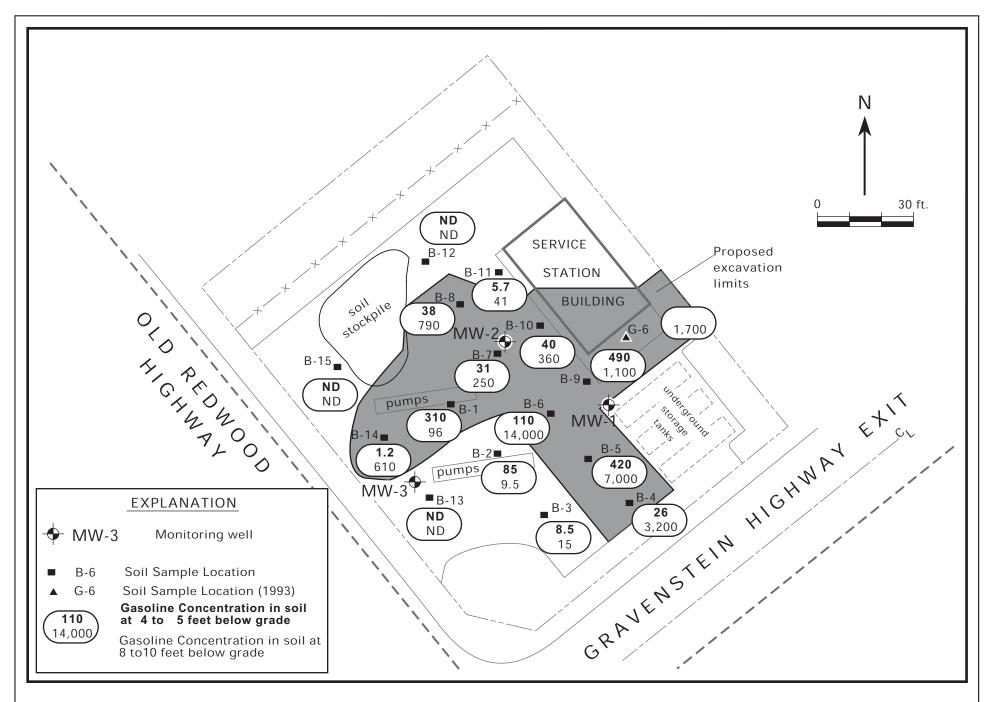


Figure 4. Gasoline Concentrations in Soil -October 28, 1999 - Redwood Oil Service Station #102, 7716 Old Redwood, Cotati, California

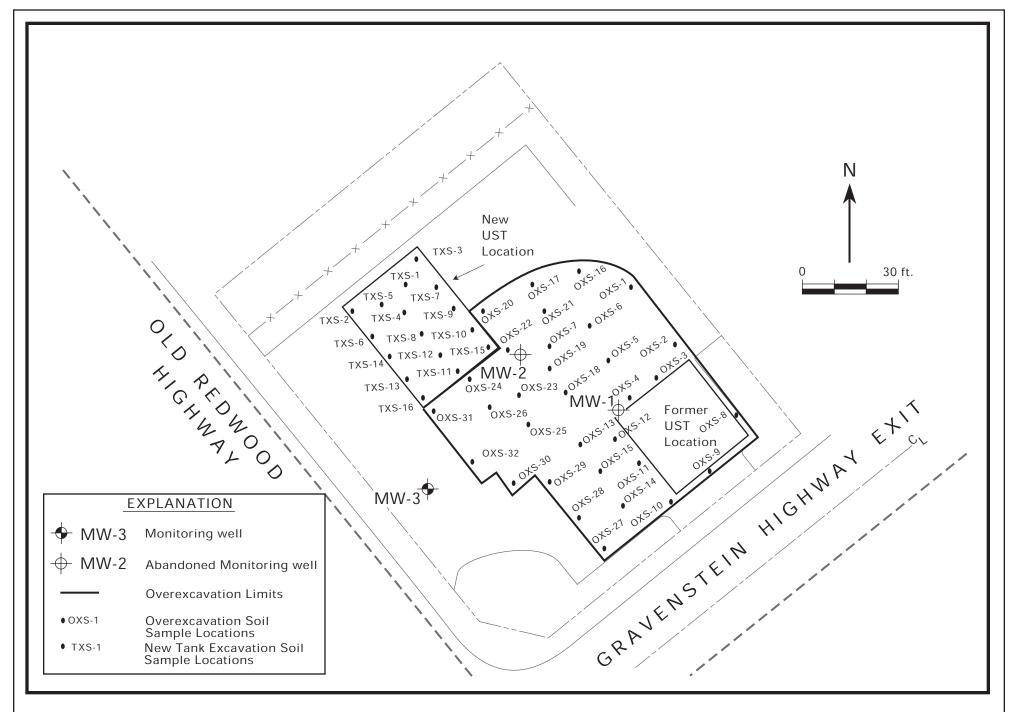


Figure 5. Overexcavation Limits and Sample Locations -January 27 & 28, 2000 - Redwood Oil Service Station #102, 7716 Old Redwood, Cotati, California

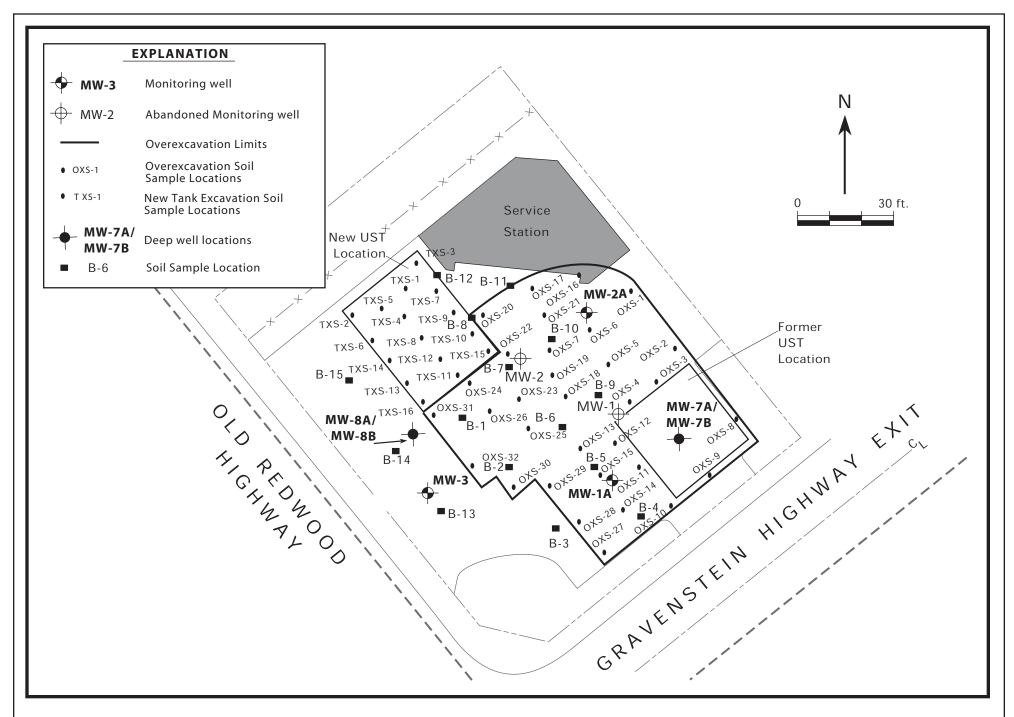


Figure 6. Overexcavation Limits and Sample Locations – January 27 & 28, 2000 – Redwood Oil Service Station #102, 7716 Old Redwood, Cotati, California

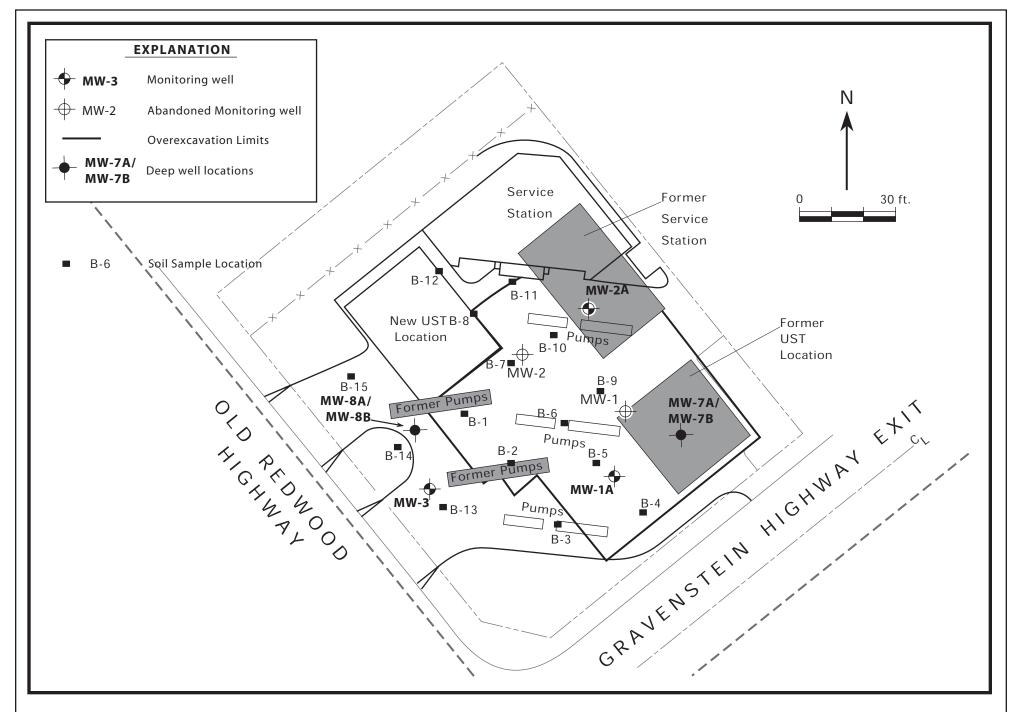


Figure 7. Overexcavation Limits and Sample Locations – January 27 & 28, 2000 – Redwood Oil Service Station #102, 7716 Old Redwood, Cotati, California

APPENDIX B
TABLES, GRAPHS, AND CALCULATIONS

Table 1. Analytical Results for Soil - UST Excavation, Waste Oil Tank and On-Site Soil Characterization - 7716 Old Redwood Highway, Cotati, California

Sample	Sample	Sample	TPPH(G)	Benzene	Toluene	Ethylbenzene	Xylenes	MTBE
ID	Date	Depth (in feet)	<		p	pm		
1	6/25/99	8	1,300	0.38	22	21	141	0.88
2	6/25/99	8	780	0.38	18	13	81	0.95
3	6/25/99	8	1,900	1.9	67	36	220	11
4	6/25/99	8	2,400	7.9	94	40	230	27
5	6/25/99	8	2,600	8.9	110	43	240	66
6	6/25/99	8	130	0.052	0.81	0.96	8.3	6.1
7	6/25/99	8	4,300	2.6	110	66	450	4.0
8	6/25/99	8	100	0.17	4.2	1.6	11	0.20
9	6/25/99	13	810	0.82	21	11	74	2.6
P-1	6/29/99	2	330	0.73	8.4	1.3	26	
P-2	6/29/99	2	66¹	< 0.125	< 0.125	0.31	0.44	
P-3	6/29/99	2	1,700	1.2	0.76	6.2	38	
P-4	6/29/99	2	6,600	6.0	86	39	< 2.5	
P-5	6/29/99	2	110	0.21	< 0.125	1.5	3,1	
P-6	6/29/99	2	2,500	2.2	4.1	18	83	

Explanation:

TPPH(G) - Total Purgeable Petroleum Hydrocarbons as Gasoline.

PPM - Parts Per Million MTBE - Methyl-t-butyl ether

Notes:

¹ Results within Quantitation range; chromatographic pattern not typical of fuel.

Table 1. Analytical Results for Soil - UST Excavation, Waste Oil Tank and On-Site Soil Characterization - 7716 Old Redwood Highway, Cotati, California

Sample	Sample	Sample	TPH-G	TPH-D	ТРН-МО	В	Т	E	х	Cd	Cr	Pb	Ni	Zn	MTBE	8010
ID	Date	Depth		<>												
wo	6/25/99	6 feet	<1.0	<1.0	<10	<0.005	< 0.005	< 0.005	< 0.005	<5.0	13	<5.0	25	18	<0.005	ND1

Explanation:

TPH-G - Total Petroleum Hydrocarbons as Gasoline.

TPH-D - Total Petroleum Hydrocarbons as Diesel.

TPH-MO - Total Petroleum Hydrocarbons as Motor Oil.

B - Benzene

T - Toluene

E - Ethyl Benzene

X - Xylenes

Cd - Cadmium

Cr - Chromium

Pb - Lead

Ni - Nickel

Zn - Zinc

MTBE - Methy-t-butyl ether

Notes:

¹ Analyzed by EPA Method 8010 for Purgeable Halocarbons. No analytes were detected at a detection limit of 5.0 ppb.

Table 1. Analytical Results for Soil - UST Excavation, Waste Oil Tank and On-Site Soil Characterization - 7716 Old Redwood Highway, Cotati, California

Sample	Sample	Sample	TPH-Gas	Benzene	Toluene	Ethyl Benzene	Xylenes
ID	Date	Depth (in feet)	<		PPM		
B-1	10/28/99	4'	310	1.8	6.8	7.8	46
	10/28/99	9'	96	0.32	2.4	3.1	19
B-2	10/28/99	4'	85	1.3	0.96	1.5	8.2
	10/28/99	8'	9.5	0.05	0.067	0.18	0.93
B-3	10/28/99	4'	8.5	0.14	< 0.0125	0.092	0.031
	10/28/99	9'	15	0.23	0.20	0.27	1.1
B-4	10/28/99	5'	26	1.0	0.87	0.56	1.8
	10/28/99	10'	3,200	28	190	69	390
B-5	10/28/99	5'	420	7.0	31	8.6	46
	10/28/99	10'	7,000	53	480	150	890
B-6	10/28/99	5'	110	2.9	4.4	1.4	6.6
	10/28/99	10'	14,000	110	1,100	300	1,800
B-7	10/28/99	5'	31	1.2	0.33	0.44	0.89
	10/28/99	10'	250	2.8	15	4.2	26
B-8	10/28/99	5'	38	1.7	1.7	0.67	2.7
	10/28/99	10'	790	8.5	45	13	81
B-9	10/28/99	4'	490	5.5	31	8.0	47
	10/28/99	8'	1,100	11	61	17	110

Table 1. Analytical Results for Soil - UST Excavation, Waste Oil Tank and On-Site Soil Characterization - 7716 Old Redwood Highway, Cotati, California

Sample	Sample	Sample	TPH-Gas	Benzene	Toluene	Ethyl Benzene	Xylenes
ID	Date	Depth (in feet)	<		PPM		
B-10	10/28/99	4'	40	0.28	< 0.001	0.68	2.9
	10/28/99	8'	360	2.8	22	6.6	40
B-11	10/28/99	4'	5.7	0.16	0.055	0.12	0.53
	10/28/99	9'	41	0.31	1.3	0.54	3.0
B-12	10/28/99	4'	<1.0	0.016	< 0.005	0.018	0.022
	10/28/99	8'	<1.0	< 0.005	< 0.005	< 0.005	< 0.005
B-13 ¹	10/28/99	4'	< 5.0	< 0.03	< 0.03	< 0.03	< 0.03
	10/28/99	8'	<1.0	< 0.005	< 0.005	< 0.005	< 0.005
B-14	10/28/99	4'	1.2	0.078	< 0.005	0.032	0.071
	10/28/99	8'	610	5.4	27	17	85
B-15	10/28/99	5'	< 2.0	< 0.01	< 0.01	< 0.01	< 0.01
	10/28/99	10'	<1.0	0.01	< 0.005	< 0.005	< 0.005

Explanation:

PPM = Parts Per Million

Notes:

¹ Sample diluted due to high concentrations of non-target hydrocarbons.

Table 2. Analytical Results for Soil - Over Excavation Samples - 7716 Old Redwood Highway, Cotati, California

Sample ID Sample Depth	Sample Date	TPH(G)	TPH(D)	Benzene	Toluene	Ethyl Benzene	Xylene	MTBE
		<			PPM			
OXS-19 / 8'	1/28/00	1,000	<1.0 1	5.1	36	11	62	21
OXS-20 / 8'	1/28/00	390	< 1.0 1	0.96	8.2	4.8	19	1.0
OXS-21 / 8'	1/28/00	2,800	580 1	8.8	94	47	200	14
OXS-22 / 8'	1/28/00	210	< 1.0	1.7	. 9.1	1.8	8.1	39
OXS-23 / 8'	1/28/00	1,300	660 1	< 5.0	60	18	91	100
OXS-24 / 8'	1/28/00	3,000	360 ¹	12	120	41	200	65
OXS-25 / 8'	1/28/00	16,000	2,400 1	84	460	190	690	810
OXS-26 / 8'	1/28/00	5,900	150 1	33	180	73	270	87
OXS-27 / 8'	1/28/00	1,100	< 1.0 1	< 5.0	27	9.8	56	12
OXS-28 / 8'	1/28/00	4,100	370 1	22	110	57	200	61
OXS-29 / 8'	1/28/00	6,000	440 1	19	170	89	330	19
OXS-30 / 8'	1/28/00	1,900	170 ¹	5.9	53	25	120	29
OXS-31 / 8'	1/28/00	1,400	38 1	< 5.0	32	17	80	< 5.0
OXS-32 / 8'	1/28/00	3,700	300 1	13	110	57	240	34

NOTES:

1. TPH (G) was present in the diesel range

Table 2. Analytical Results for Soil - Over Excavation Samples - 7716 Old Redwood Highway, Cotati, California

Sample ID Sample Depth	Sample Date	TPH(G)	TPH(D)	Benzene	Toluene	Ethyl Benzene	Xylenes	МТВЕ
		<			PPM			>
OXS-1 / 6'	1/27/00	<1.0	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005
OXS-2 / 8'	1/27/00	400	57 ¹	< 0.50	1.9	3.3	18	< 0.50
OXS-3 / 8'	1/27/00	2,000	380 ¹	< 2.5	30	36	140	11
. OXS-4 / 8'	1/27/00	1.9	<1.0	0.02	0.006	0.02	0.04	3,000
OXS-5 / 6'	1/27/00	<1.0	<1.0	< 0.005	0.006	< 0.005	0.01	0.05
OXS-6 / 6'	1/27/00	2.9	<1.0	0.02	0.04	0.04	0.14	0.10
OXS-7 / 6'	1/27/00	<1.0	<1.0	< 0.005	< 0.005	< 0.005	0.03	0.08
OXS- 8 / 8'	1/27/00	14	<1.0	0.20	0.14	0.19	0.43	5400
OXS-9 / 8'	1/27/00	130	<1.0	0.56	2.2	0.83	5.6	3.2
OXS-10 / 8'	1/27/00	290	<1.0	1.2	4.4	5.8	17	4.3
OXS-11 / 10'	1/27/00	810	66 '	0.51	11	5.4	70	1.8
OXS-12 / 8'	1/27/00	490	500 ¹	2.1	14	8.4	35	14
OXS-13 / 8'	1/27/00	9,300	1,200 1	48	330	160	670	270
OXS-14 / 8'	1/27/00	11,000	1,500 1	65	340	190	770	360
OXS-15 / 8'	1/27/00	2,600	270 ¹	12	80	48	190	68
OXS-16 / 6'	1/28/00	< 0.005	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	.011
OXS-17 / 8'	1/28/00	170	<1.0	0.91	4.4	2.1	8.6	2.3
OXS-18 / 8'	1/28/00	79	< 1.0 1	< 0.25	2.7	. 0.99	4.9	0.85

Table 2. Analytical Results for Soil - Over Excavation Samples - 7716 Old Redwood Highway, Cotati, California

Sample ID Sample Depth	Sample Date	TPH(G)	TPH(D)	Benzene	Toluene	Ethyl Benzene	Xylenes	MTBE
		<			PPM			>
TXS-1 / 8'	3/7/00	12,000	690¹	120	700	220	1,100	340³
TXS-2 / 18'	3/7/00	120	<1.0	3.1	7.3	1.2	5.3	14 ³
TXS-3 / 18'	3/7/00	1.1	<1.0	0.02	0.04	0.008	0.05	1.13
TXS-4 / 8'	3/7/00	120	<1.0	0.74	6.0	2.6	14	10 ³
TXS-5 / 8'	3/7/00	31	<1.0	<0.13	1.9	0.68	3.2	0.323
TXS-6 / 8'	3/7/00	18	<1.0	0.05	0.03	<0.03	<0.03	35³
TXS-7 / 8'	3/7/00	40,000	370¹	47	350	110	570	340³
TXS-8 / 8'	3/7/00	1,500	73¹	13	87	37	140	110 ³
TXS-9 / 8'	3/7/00	3,400	290 ¹	22	170	62	310	220 ³
TXS-10 / 8'	3/7/00	1,200	130¹	13	73	29	120	97³
TXS-11 / 8'	3/7/00	280	191	<0.25	0,56	2.6	5.1	0.643
TXS-12 / 8'	3/7/00	8,300	251	2.9	15	15	47	0.54
TXS-13 / 8'	3/7/00	250	13¹	0.32	1.0	2.5	6.0	0.263
TXS-14 / 7'	3/7/00	<1.02	<1.0	0.007	0.005	0.01	0.005	1.5 ³
TXS-15 / 18'	3/7/00	<1.0	<1.0	0.005	<0.005	<0.005	<0.005	0.525
TXS-16 / 18'	3/7/00	<1.0	<1.0	< 0.005	<0.005	<0.005	<0.005	1.3 ³

Table 2. Analytical Results for Soil - Over Excavation Samples - 7716 Old Redwood Highway, Cotati, California

Explanation:

TPH(G) - Total Petroleum Hydrocarbons as Gasoline TPH(D) - Total Petroleum Hydrocarbons as Diesel MTBE - Methyl-tert-butyl-ether PPM - Parts per Million

Notes:

¹ TPH(G) was present in the TPHdiesel range.

² TPH(G) was present below the reporting limit (@620 ppb)

³ Analyzed by EPA Method 8260 for fuel oxygenates. No other oxygenates detected. Detection limits are shown in laboratory analytical report.

⁴ Analyzed by EPA Method 8260 for fuel oxygenates. Tertiary butanol detected at 0.42 ppm. No other oxygenates detected.

⁵ Analyzed by EPA Method 8260 for fuel oxygenates. Tertiary butanol detected at 0.5 ppm. No other oxygenates detected.

Table 3. Analytical Results for Soil - Monitoring Wells and Borings - Redwood Oil Service Station - 7716 Old Redwood Highway, Cotati, California

Samp le ID	Sample Date	Sample Depth (in feet)	TPPH-Gas	TPH-Diesel	Benzene	Toluene	Ethyl Benzene	Xylenes	MTBE	O&G	VOCs
			<				ppm				>
MW-1	9/18/91	3.5 - 4.0	9.0		0.42	0.49	0.23	1.1			
	9/18/91	15 -15.5	100		1.5	6.0	1.8	8.7			
	9/18/91	24 - 24.5	1.4		0.42	0.023	0.06	0.035			
	9/18/91	29.5 - 30	<1.0		0.0032	0.0033	<0.0025	<0.0025			
MW-2	9/19/91	6 - 6.5	<1.0		0.022	<0.0025	0.0055	0.014		<50	ND¹
	9/19/91	14.5 - 15	1.3		0.093	<0.0025	0.0087	<0.0025		<50	ND¹
	9/19/91	25.5 - 26	<1.0		< 0.0025	<0.0025	<0.0025	<0.0025		<50	ND ¹
MW-3	9/20/91	5.5 - 6.0	240		0.34	8.1	4.9	21.1			
	9/20/91	14.5 - 15	1.3		0.28	0.0057	0.019	0.022			
	9/20/91	25.5 - 26	<1.0		0.0031	0.0031	<0.0025	<0.0025			
G - 5	10/15/93	5.5	<1.0		0.0052	<0.0025	<0.0025	<0.0025			
G - 6	10/15/93	5.5	1,700		1.8	12.0	12.0	65.0			
G - 14	2/9/98	4.0	<1.0		<0.005	<0.005	<0.005	< 0.005			

Table 3. Analytical Results for Soil - Monitoring Wells and Borings - Redwood Oil Service Station - 7716 Old Redwood Highway, Cotati, California

Samp le ID	Sample Date	Sample Depth (in feet)	TPPH-Gas	TPH-Diesel	Benzene	Toluene	Ethyl Benzene	Xylenes	MTBE	O&G	VOCs
			<				ppm				>
G - 15	2/9/98	4.0	<1.0	< 0.005	< 0.005	<0.005	< 0.005	<0.005			
G-16	4/19/00	6.5'	<1.0	<1.0	< 0.005	<0.005	< 0.005	<0.005			
G-17	4/19/00	6.5'	<1.0	<1.0	< 0.005	<0.005	<0.005	< 0.005			
MW-4	4/19/00	6.5'	<1.0	<1.0	< 0.005	<0.005	<0.005	< 0.005			
MW-1A	3/20/01	8.0'	<1.0		< 0.005	<0.005	<0.005	< 0.005	< 0.005		
MW-2A	3/20/01	5.5'	<1.0		< 0.005	<0.005	<0.005	<0.005	< 0.005		
	3/20/01	11.0'	<1.0		0.00800	<0.005	0.00600	0.00600	0.0430		
	3/20/01	16.0'	140		<0.1	1.2	1.0	6.0	0.35		
MW-5	10/16/02	5'	<2.5	_	< 0.025	<0.025	<0.025	<0.05	<0.25	_	
	10/16/02	10'	<2.5	_	<0.025	<0.025	<0.025	<0.05	<0.25	_	
MW-6	10/16/02	6'	<2.5	_	<0.025	<0.025	<0.025	<0.05	<0.25	_	
	10/16/02	10'	<2.5	_	< 0.025	<0.025	<0.025	<0.05	<0.25	_	

Table 3. Analytical Results for Soil - Monitoring Wells and Borings - Redwood Oil Service Station - 7716 Old Redwood Highway, Cotati, California

Explanation:

PPM = Parts Per Million

TPPH(G) = Total Purgeable Petroleum Hydrocarbons as gasoline

TPH(D) = Total Petroleum Hydrocarbons as diesel

MTBE = Methyl-tert-butyl-ether
--- = Not analyzed

ND = Not detected

Notes:

¹ Acetone and xylenes (total) were detected at 0.023 and 0.0058 ppm, respectively. The laboratory method blank contained 31 ug/kg acetone.

Table 4. Water Level Data Well Construction Details - Redwood Oil Service Station #102 7716 Old Redwood Highway, Cotati, California

Well ID	Sample Date	DTW (Ft)	TOC (Ft,	GWE (Ft,	Product	Screen	Sand Pack	Bentonite/	Notes
			msl)	msl)	Thickness	Interval	Interval	Grout	
					(ft)			Interval	
MW-1	9/26/1991						8 - 25	0 - 8	
	12/19/1991	18.30		83.29		_1			
	3/16/1992			93.98					
	6/24/1992			92.32					
	9/23/1992			87.43					
	12/18/1992			92.28					
	3/22/1993			96.99	0.00				
	6/22/1993			93.09	0.00				
	9/24/1993			90.94					
	12/28/1993			91.93	0.00				
	3/25/1994			93.43					
	6/20/1994			92.53					
	9/8/1994			91.24					
	12/12/1994			93.15					
	3/15/1995			97.64					
	7/6/1995			94.66	0.00				
	9/19/1995	9.39		92.20	0.00				
	12/20/1995	12.70		88.89	0.00				
	3/28/1996			95.20	0.00				
	6/24/1996	9.36		93.75	1.90				Note 1: GWE corrected for the presence of free
									phase hydrocarbons.
	9/26/1996			91.93	4.02				See Note 1
	12/31/1996			97.26					See Note 1
	3/18/1997			94.77	0.02				See Note 1
	6/30/1997			92.26		_1			
	9/26/1997			90.62					See Note 1
	12/10/1997			95.72		_1			See Note 1
	3/9/1998			97.80		_1			
	6/16/1998			94.59					
	9/14/1998			92.37					
	12/15/1998			94.32					See Note 1
	3/24/1999			95.94		-			
	6/11/1999]	93.49	0.00				
	9/9/1999	_		_					Well damaged during UST removal.

Table 4. Water Level Data Well Construction Details - Redwood Oil Service Station #102 7716 Old Redwood Highway, Cotati, California

Well ID	Sample Date	DTW (Ft)	TOC (Ft,	GWE (Ft,	Product	Screen	Sand Pack	Bentonite/	Notes
			msl)	msl)	Thickness	Interval	Interval	Grout	
					(ft)			Interval	
MW-1A	3/26/2001	5.93		95.52	0.00	5 - 20	4 - 20	0 - 4	
	6/19/2001	6.75		94.70	0.00	<u>)</u>			
	9/7/2001	10.47		90.98	0.00				
	12/4/2001	6.41		95.04	0.00				
	2/26/2002	5.62	103.85	98.23	0.00				Monitoring well surveyed for EDF compliance, November 5, 2001.
	5/17/2002	6.52		97.33	0.00				
	8/29/2002	9.47		94.38	0.00				
	11/26/2002	7.07		96.78	0.00				
	2/20/2003	4.92		98.93	0.00				
	5/23/2003	6.76		97.09	0.00				
	8/20/2003	8.66		95.19	0.00				
	11/20/2003	7.15		96.70	0.00				
	2/23/2004	5.67		98.18	0.00				
	5/12/2004	6.02		97.83	0.00				
	8/23/2004	8.64		95.21	0.00	<u>)</u>			
	11/10/2004			97.05	0.00				
	2/22/2005			99.93	0.00				
	5/11/2005	1		99.10					
	8/11/2005	6.29		97.56	0.00				
						T		1	T
MW-2	9/26/1991						8 - 25	0 - 8	
	12/19/1991			83.40					
	3/16/1992			93.68	0.00				
	6/24/1992			92.12	0.00				
	9/23/1992			87.18					
	12/18/1992			91.28	0.00				
	3/22/1993			95.11	0.00				
	6/22/1993			93.98	0.00				
	9/24/1993			90.77	0.00				
	12/28/1993			91.35					
	3/25/1994			93.74					
	6/20/1994			92.65	0.00				
	9/8/1994	10.62		90.97	0.00				

Table 4. Water Level Data Well Construction Details - Redwood Oil Service Station #102 7716 Old Redwood Highway, Cotati, California

Well ID	Sample Date	DTW (Ft)	` '	\ ,	Product	Screen	Sand Pack	Bentonite/	Notes
			msl)	msl)	Thickness	Interval	Interval	Grout	
D #337. 0	12/12/1004	0.00	101.50	02.70	(ft)	10 25	0. 27	Interval	
MW-2	12/12/1994						8 - 25	0 - 8	
	3/15/1995			97.52					
	7/6/1995			94.34					
	9/19/1995			92.29					
	12/20/1995			92.78					
	3/28/1996			95.25					
	6/24/1996			93.95					
	9/26/1996			91.50					See Note 1
	12/31/1996			95.95					See Note 1
	3/18/1997			94.56		-			See Note 1
	6/30/1997			92.43					See Note 1
	9/26/1997			90.66					See Note 1
	12/10/1997			94.30					See Note 1
	3/9/1998			96.71	0.00				
	6/16/1998			94.98					See Note 1
	9/14/1998			91.64					See Note 1
	12/15/1998			92.86		-			See Note 1
	3/24/1999			95.36					See Note 1
	6/11/1999			94.08	0.02				See Note 1
	9/9/1999	1		92.28	0.25				See Note 1
	3/21/2000		-						Well abandoned on January 24, 2000.
MW-2A	3/26/2001				0.00		4 - 20	0 - 4	
	6/19/2001			93.25					
	9/7/2001			94.96	0.00				
	12/4/2001			93.25	0.00				
	2/26/2002	6.10	104.40	98.30	0.00				Monitoring well surveyed for EDF compliance,
									November 5, 2001.
	5/17/2002	7.88		96.52	0.00				
	8/29/2002	6.85		97.55	0.00				
	11/26/2002	9.49		94.91	0.00				
	2/20/2003	5.85		98.55	0.00				
	5/23/2003			98.98					
	8/20/2003			97.56					

Table 4. Water Level Data Well Construction Details - Redwood Oil Service Station #102 7716 Old Redwood Highway, Cotati, California

Well ID MW-2A	Sample Date 11/20/2003 2/23/2004 5/12/2004 8/23/2004 11/10/2004 2/22/2005	3.74 7.37 6.89 8.48	msl) 104.40	msl)	Product Thickness (ft) 0.00 0.00 0.00 0.00 0.00 0.00	Sand Pack Interval 4 - 20	Bentonite/ Grout Interval 0 - 4	Notes
	5/11/2005 8/11/2005	6.74		97.66 96.93	0.00			
MW-3	9/26/1991 12/19/1991 3/16/1992 6/24/1992 9/23/1992 12/18/1992 3/22/1993 6/22/1993 12/28/1993 3/25/1994 6/20/1994 9/8/1994 12/12/1994 3/15/1995 7/6/1995 9/19/1995 12/20/1995 3/28/1996 6/24/1996 9/26/1996 12/31/1996 3/18/1997 6/30/1997	8.25 12.46 9.25 6.02 7.00 9.36 8.99 6.96 7.83 9.11 7.75 3.62 6.63 8.31 7.70 5.77 6.81 8.90 5.16 6.22 8.01		87.25 85.09 93.99 92.88 88.67 91.88 95.11 94.13 91.77 92.14 94.17 93.30 92.02 93.38 97.51 94.50 92.82 93.43 95.36 94.32 95.97 94.91 93.12 91.80	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	8 - 25	0 - 8	

Table 4. Water Level Data Well Construction Details - Redwood Oil Service Station #102 7716 Old Redwood Highway, Cotati, California

Well ID	Sample Date	DTW (Ft)	TOC (Ft,	GWE (Ft,	Product	Screen	Sand Pack	Bentonite/	Notes
	1		msl)	msl)	Thickness	Interval	Interval	Grout	
				,	(ft)			Interval	
MW-3	12/10/1997	6.64	101.13	94.49	0.00	10 - 25	8 - 25	0 - 8	
	3/9/1998	4.53		96.60	0.00				
	6/16/1998			94.39	0.00				
	9/14/1998			93.79	0.00				
	12/15/1998			95.53	0.00				
	3/24/1999			96.27	0.00				
	6/11/1999			94.63	0.00				
	9/9/1999			93.22	0.00				
	3/21/2000			95.55	0.00				
	10/2/2000			93.02	0.00	-1			
	3/26/2001	5.80	103.27	95.07	0.00				Monitoring well surveyed for EDF compliance,
									November 5, 2001.
	6/19/2001	7.17		93.70					
	9/7/2001	8.80		92.07	0.00				
	12/4/2001	7.40		93.47	0.00	-1			
	2/26/2002			98.30					
	5/17/2002			96.81	0.00	-1			
	8/29/2002			95.32	0.00				
	11/26/2002			94.57	0.00	-1			
	2/20/2003			98.48	0.00				
	5/23/2003			97.88	0.00	-1			
	8/20/2003			95.92	0.00				
	11/20/2003			94.72	0.00				
	2/23/2004			99.07	0.00				
	5/12/2004			97.22	0.00				
	8/23/2004			95.93	0.00				
	11/10/2004			95.80					
	2/22/2005			98.96	0.00				
	5/11/2005	4.60	<u>'</u>	98.67	0.00				
	8/11/2005	6.06		97.21	0.00				
		_					_		
MW-4	5/4/2000				0.00		4 - 25	0 - 4	
	10/2/2000				0.00				
	3/26/2001	4.28		95.21	0.00				

Table 4. Water Level Data Well Construction Details - Redwood Oil Service Station #102 7716 Old Redwood Highway, Cotati, California

Well ID	Sample Date	DTW (Ft)	TOC (Ft,	GWE (Ft,	Product	Screen	Sand Pack	Bentonite/	Notes
	1		msl)	msl)	Thickness	Interval	Interval	Grout	
					(ft)			Interval	
MW-4	6/19/2001	6.97	99.49	92.52			4 - 25	0 - 4	
	9/7/2001	9.51		89.98	0.00				
	12/4/2001	6.75		92.74	0.00				
	2/26/2002	3.45	101.89	98.44	0.00				Monitoring well surveyed for EDF compliance, November 5, 2001.
	5/17/2002	5.35		96.54	0.00				
	8/29/2002	8.41		93.48	0.00				
	11/26/2002	9.47		92.42	0.00				
	2/20/2003	3.65		98.24	0.00				
	5/23/2003	4.27		97.62	0.00				
	8/20/2003	7.40		94.49	0.00				
	11/20/2003	9.00		92.89	0.00				
	2/23/2004	2.32		99.57	0.00				
	5/12/2004	4.86		97.03	0.00				
	8/23/2004	7.34		94.55	0.00				
	11/10/2004	6.62		95.27	0.00)			
	2/22/2005	1.37		100.52	0.00				
	5/11/2005	2.48		99.41	0.00				
	8/11/2005	5.86		96.03	0.00				
	_					•			
MW-5	11/26/2002	8.81	102.41	93.60	0.00	5 - 25	4 - 25	0 - 4	Monitoring well surveyed for EDF compliance, November 16, 2002.
	2/20/2003	3.45		98.96	0.00				
	5/23/2003	4.02		98.39	0.00				
	8/20/2003								Well inaccessible.
	11/20/2003	8.48		93.93	0.00				
	2/23/2004	2.88		99.53	0.00				
	5/12/2004	5.30		97.11	0.00				
	8/23/2004	7.20		95.21	0.00				
	11/10/2004	6.46		95.95	0.00	-1			
	2/22/2005			99.57	0.00	-1			
	5/11/2005			98.06	0.00				
	8/11/2005	5.76		96.65	0.00				

Table 4. Water Level Data Well Construction Details - Redwood Oil Service Station #102 7716 Old Redwood Highway, Cotati, California

Well ID	Sample Date	DTW (Ft)	TOC (Ft,	GWE (Ft,	Product	Screen	Sand Pack	Bentonite/	Notes
			msl)	msl)	Thickness	Interval	Interval	Grout	
					(ft)			Interval	
MW-6	11/26/2002	10.48	104.26	93.78	0.00	5 - 25	4 - 25	0 - 4	Monitoring well surveyed for EDF compliance, on
									November 16, 2002.
	2/20/2003	7.32		96.94	0.00				
	5/23/2003	7.65		96.61	0.00				
	8/20/2003	8.49		95.77	0.00				
	11/20/2003	9.88		94.38	0.00				
	2/23/2004	7.01		97.25	0.00				
	5/12/2004	7.90		96.36	0.00				
	8/23/2004	8.61		95.65	0.00				
	11/10/2004	8.85		95.41	0.00				
	2/22/2005	6.42		97.84	0.00				
	5/11/2005	7.64		96.62	0.00				
	8/11/2005	7.80		96.46	0.00				
MW-7A	4/27/2005	6.98	104.20	97.22	0.00	45 - 55	44 - 55	0 - 44	
	8/11/2005	7.89		96.31	0.00				
MW-7B	4/27/2005	9.32	104.27	94.95	0.00	67 - 77	66 - 77	0 - 66	
	8/11/2005	10.22		94.05	0.00				
MW-8A	4/27/2005	11.97	103.55	91.58	0.00	42 - 52	41 - 52	0 - 41	
	8/11/2005	6.44		97.11	0.00				
MW-8B	4/27/2005			95.01	0.00	62 - 72	61 - 73	0 - 61	
	8/11/2005	7.29		96.41	0.00				

Explanation:

DTW Depth to Water

ft feet

TOC Top of Casing msl Mean Sea Level

GWE Ground Water Elevation

Table 5. Analytic Results for Ground Water - Redwood Oil Service Station #102, 7716 Old Redwood Highway, Cotati, California

Well ID	Date Sampled	TPPH/TPH (G)	Benzene	Toluene	Ethyl benzene	Xylenes	Notes
		<	р	pb		->	
MW-1	9/26/1991	50,000	17,000	3,600	1,200	4,700	Analyzed for Or. Pb. No Or. Pb was detected.
	12/19/1991	34,000	17,000	4,000	2,500	4,400	
	3/16/1992	77,000	16,000	23,000	2,900	13,000	
	6/24/1992	78,000	19,000	19,000	3,100	12,000	
	9/23/1992	110,000	25,000	31,000	2,400	16,000	
	12/18/1992	68,000	7,700	8,300	480	7,000	
	3/22/1993	3,600	150	250	46	310	
	6/22/1993	75,000	12,000	11,000	2,500	10,000	
	9/24/1993	680	180	37	10	20	
	3/25/1994	89,000	13,000	12,000	1,600	5,800	
	9/8/1994	570,000	18,000	11,000	2,000	4,200	
	3/15/1995	85,000	12,000	17,000	2,000	9,400	Sample was flagged by lab. See laboratory analytical reports.
	9/19/1995	100,000	13,000	9,300	2,800	12,000	
	3/28/1996						Separate phase product present in well.
	9/26/1996						Separate phase product present in well.
	3/18/1997						Separate phase product present in well.
	9/26/1997						Separate phase product present in well.
	3/9/1998	270,000	15,000	32,000	4,100	20,000	
	9/14/1998	1,700,000	20,000	59,000	19,000		
	3/25/1999	210,000	24,000	35,000	5,900		Analyzed for HVOCs. HVOCs not detected
	9/9/1999						Well damaged during UST excavation. Well was abandoned on
							February 11, 2000.
MW-1A	3/26/2001	28,000	200	780	290		
	6/19/2001	3,300	38	10	67		
	9/7/2001	45,000	3,600	4,800	2,900		
	12/4/2001	4,500	240	<25	62		
	2/26/2002	<2,500	150	<25	<25		
	5/17/2002	600	180	13	22		
	8/29/2002	29,000	1,800	1,200	1,900	2,600	Sample was flagged by lab. See laboratory analytical reports.
	11/26/2002	320	4	4	1	5	
	2/20/2003	<250	140	10	9	10	
	5/23/2003	13,000	690	380	860	1,000	
	8/20/2003	4,200	840	110	730		
	11/20/2003	980	170	12	22	15	

Table 5. Analytic Results for Ground Water - Redwood Oil Service Station #102, 7716 Old Redwood Highway, Cotati, California

Well ID	Date Sampled	TPPH/TPH (G)	Benzene	Toluene	Ethyl benzene	Xylenes	Notes
		<					
MW-1A	5/12/2004	160	<2.5	< 2.5			
	11/10/2004	170	<2.5	< 2.5			
	5/11/2005	260	9.0	25	14	25	
	0.10.614.004				1		L
MW-2	9/26/1991	300	59	0.6	<0.5		Analyzed for oil & grease, Or. Pb and HVOCs. No O&G, Or. Pb, or HVOCs were detected.
	12/19/1991	2,400	1,200	46			
	3/16/1992	4,200	2,500	< 0.5	100		
	6/24/1992	5,300	2,600	< 0.5	120	53	
	9/23/1992	530	190	0.9	2.9	< 0.5	
	12/18/1992	3,100	1,600	5	40	17	
	3/22/1993	1,400	1,100	2.1	24	5.6	
	6/22/1993	850	450	4.8	16	4.2	
	9/24/1993	68,000	14,000	11,000	2,300	8,400	
	3/25/1994	1,500	510	94	30	40	
	9/8/1994	1,400	400	130	26	45	
	3/15/1995	5,900	2,500	5,300	160	7,200	Sample was flagged by lab. See laboratory analytical reports.
	9/19/1995	12,000	2,800	150			
	3/28/1996	24,000	3,000	3,400	490	2,100	
	9/26/1996						Separate phase product present in well.
	3/18/1997						Separate phase product present in well.
	9/26/1997						Separate phase product present in well.
	3/9/1998	73,000	7,300	5,400	770		
	9/14/1998						Separate phase product present in well.
	3/25/1999						Separate phase product present in well.
	9/9/1999						Separate phase product present in well. Well MW-2 was abandoned on
						l	January 24, 2000.
MW-2A	3/26/2001	110,000	8,000	30,000	2,900	17,000	
=	6/19/2001	80,000	4,100	16,000			
	9/7/2001	1,800	35	14			
	12/4/2001	29,000	2,400	2,800			
	2/26/2002	60,000	3,700	6,800			
	5/17/2002	39,000	2,400	4,200			
	8/29/2002	2,500	190	16		,	Sample was flagged by lab. See laboratory analytical reports.

Table 5. Analytic Results for Ground Water - Redwood Oil Service Station #102, 7716 Old Redwood Highway, Cotati, California

Well ID	Date Sampled	TPPH/TPH (G)			Ethyl benzene	Xylenes	Notes
		<	p _]	pb		->	
MW-2A	11/26/2002	8,400	600	170	1,200		
	2/20/2003	9,200	760	930	1,300	1,810	
	5/23/2003	1,100	57	9	9	9	
	8/20/2003	140	2	<1	<1	1	
	11/20/2003	9,900	630	110	990	290	
	5/12/2004	5,900	160	59	350	260	
	11/10/2004	11,000	630	350	930		
	5/11/2005	5,400	160	150	380	460	
		T					
MW-3	9/26/1991	510	52	5.5	1.8		Analyzed for Or. Pb. No Or. Pb was detected.
	12/19/1991	9,400	3,700	310	140		
	3/16/1992	8,200	4,400	320	240		
	6/24/1992	21,000	11,000	770	730		
	9/23/1992	22,000	9,100	920	720	1,900	
	12/18/1992	9,600	2,600	73	180	130	
	3/22/1993	62,000	35,000	3,900	2,300	12,000	
	6/22/1993	32,000	13,000	940	1,100	3,800	
	9/24/1993	13,000	5,500	240	420	1,300	
	3/25/1994	24,000	11,000	530	610	2,300	
	9/8/1994	22,000	7,700	170	590	1,600	
	3/15/1995	110,000	33,000	2,800	2,000	8,000	Sample was flagged by lab. See laboratory analytical reports.
	9/19/1995	300,000	19,000	590	1,300	3,200	
	3/28/1996	55,000	19,000	420	1,600	3,000	
	9/26/1996	25,000	7,200	26	480	340	
	3/18/1997	36,000	14,000	240	950	1,000	
	9/26/1997	28,000	11,000	42	810	570	
	3/9/1998	71,000	28,000	580	1,800	3,200	
	9/14/1998	49,000	27,000	400	<100	1,700	
	3/25/1999	85,000	25,000	370	2,300	2,800	Samples were analyzed for HVOCs. HVOCs were not detected
	9/9/1999	53,000	29,000	<250	2,000	870	
	3/21/2000	160,000	12,000	< 50	2,000	1,700	
	10/2/2000	100,000	31,000	< 50	1,600	1,300	
	3/26/2001	51,000	22,000	55	540	130	
	6/19/2001	73,000	27,000	<250	1,600	730	
	9/7/2001	53,000	17,000	<250	1,200	<250	

Table 5. Analytic Results for Ground Water - Redwood Oil Service Station #102, 7716 Old Redwood Highway, Cotati, California

Well ID	Date Sampled	TPPH/TPH (G)	Benzene	Toluene	Ethyl benzene	Xylenes	Notes
		<				->	
MW-3	12/4/2001	170,000	34,000	<1,250			
	2/26/2002	96,000	30,000	< 500			
	5/17/2002	48,000	29,000	<100	2,600		
	8/29/2002	93,000	44,000	< 500	2,500		Sample was flagged by lab. See laboratory analytical reports.
	11/26/2002	61,000	40,000	94	3,900	960	
	2/20/2003	36,000	24,000	67	1,500	137	
	5/23/2003	52,000	23,000	53	2,200	316	
	8/20/2003	33,000	24,000	38	1,100	110	
	11/20/2003	86,000	22,000	< 500	2,000	<1,000	
	5/12/2004	59,000	26,000	<250	2,400	< 500	
	11/10/2004	42,000	24,000	< 200	690		
	5/11/2005	42,000	25,000	<250	970	<250	TPH(G) value is tesult of MTBE and Benzene within TPH(G) range.
MW-4	5/4/2000	< 50	< 0.5	< 0.5	< 0.5	< 0.5	
	10/2/2000	< 50	< 0.5	< 0.5	< 0.5	< 0.5	
	3/26/2001	< 50	< 0.5	< 0.5	< 0.5	< 0.5	
	6/19/2001	< 50	< 0.5	0.84	< 0.5	< 0.5	
	2/26/2002	< 50	2.7	0.83	0.58	0.57	
	5/24/2002	52	5.4	6.8	2	7.1	
	8/29/2002	78	9.1	5.9	1.5	6.5	
	11/26/2002	< 50	3	5	1	5	
	2/20/2003	< 50	8	10	1	8	
	5/23/2003	170	3	5	<1	2	
	8/20/2003	< 50	4	<1	<1	1	
	11/20/2003	64	3.9	9.8	1.4	7.2	
	5/12/2004	<25	< 0.5	< 0.5	< 0.5		
	11/10/2004	<25	< 0.5	0.62	< 0.5		
	5/11/2005	82	3.7	23	3.6	22	
						_	
MW-5	11/26/2002	50		6	1	7	
	2/20/2003	52	15	14	2	11	
	5/23/2003	75	3	5	<1	2	
	8/20/2003						
	11/20/2003	120	19	11	5.3	8.9	
	2/23/2004	120	6.5	16	2.2	15	

Table 5. Analytic Results for Ground Water - Redwood Oil Service Station #102, 7716 Old Redwood Highway, Cotati, California

Well ID	Date Sampled	TPPH/TPH (G)	Benzene	Toluene	Ethyl benzene	Xylenes	Notes
	1	<					
MW-5	5/12/2004	<25	< 0.5	< 0.5	< 0.5	<1	
	8/23/2004	<25	< 0.5	< 0.5	< 0.5	<1	
	11/10/2004	<25	< 0.5	0.57	< 0.5	<1	
	2/22/2005	< 50	0.5	< 0.5	< 0.5	< 0.5	
	5/11/2005	90	4.9	30	4.2	26	
	8/11/2005	130	5.9	22	3.3	26	
MW-6	11/26/2002	76	8	10	2	9	
	2/20/2003	80	29	25	3	17	
	5/23/2003	140	8	10	<1	5	
	8/20/2003	< 50	5	1	<1	2	
	11/20/2003	140	13	22	2.4	13	
	2/23/2004	180	13	26	3.2	21	
	5/12/2004	<25	< 0.5	< 0.5	< 0.5	<1	
	8/23/2004	<25	< 0.5	< 0.5	< 0.5	<1	
	11/10/2004	<25	< 0.5	0.74	< 0.5	<1	
	2/22/2005	< 50	0.88	< 0.5	< 0.5	< 0.5	
	5/11/2005	150	12	57	6.5	38	
	8/11/2005	200	11	33	4.6	36	
34337.77.4	1/27/2005	20,000	-250	-250	-250	-250	T
MW-7A	4/27/2005						
	8/11/2005	<50,000	< 500	< 500	< 500	<500	Detetion limits raised due to the high concentration of MTBE
MW-7B	4/27/2005	28	0.87	1.4	2.1	8.9	
	8/11/2005	200	8.4	30	4.6		
MW-8A	4/27/2005	320		4.7	18		
	8/11/2005	600	25	47	28	130	
	1/2=/22==				l	0.5	
MW-8B	4/27/2005	38	2.1	7.6	1.5		
	8/11/2005	180	7.6	26	4.3	34	
G 1	10/17/1000	.50	.0.=			I	1
G-1	10/15/1993	<50	< 0.5	< 0.5	< 0.5	< 0.5	
G-3	10/15/1993	5/23/1907	200	32	9.4	37	
5.5	10/13/17/3	312311701	200	32	7.т	31	

Table 5. Analytic Results for Ground Water - Redwood Oil Service Station #102, 7716 Old Redwood Highway, Cotati, California

Well ID	Date Sampled	TPPH/TPH (G) E					Notes
G-4	10/15/1993	100,000	17,000	13,000	4,200	21,000	
G-5	10/15/1993	81,000	5,600	8,800	3,300	18,000	
G-6	10/15/1993						
G-7	10/15/1993	43,000	21,000	200	900	3,500	
G-8	10/15/1993	8,900	440	<5.0	490	900	
G-9	10/15/1993		<0.5	<0.5	<0.5	<0.5	
G-10	10/15/1993		< 0.5	<0.5	<0.5	< 0.5	
G-11	10/15/1993		<0.5	<0.5	<0.5	<0.5	
G-12	10/15/1993		<0.5	0.7	<0.5	< 0.5	
G-13	10/15/1993		<0.5	<0.5	<0.5	<0.5	
G-14	2/9/1998		740	1,400	930	2,700	
G-15	2/9/1998		5,100	32,000	5,100	29,000	
G-16	4/19/2000		<0.5	<0.5	<0.5	<0.5	
G-17	4/19/2000		<0.5	1,900	<0.5	<0.5	
CPT1@20' CPT1@48' CPT1@64'	10/16/2002	57,000 210 <50	3,500 4.1 <0.5	1,900	2,300 6 0.53	13,000 21 1.9	
CPT1(a)64*		<50	2.2	1.8	1.3	4.7	
CPT2@75'		<50 <50	<0.5	<0.5	<0.5	<1	

Table 5. Analytic Results for Ground Water - Redwood Oil Service Station #102, 7716 Old Redwood Highway, Cotati, California

Well ID	Date Sampled	TPPH/TPH (G)	Benzene	Toluene	Ethyl benzene	Xylenes	Notes
		<	pp	ob		>	
CPT3@45'	10/17/2003	< 50	0.79	1.4	0.54	2.3	
CPT3@73'	10/17/2003	1,300	230	110	91	280	
CPT4@45'	10/16/2003	< 50	0.72	0.93	< 0.5	<1	
CPT4@80'	10/17/2003	< 50	< 0.5	< 0.5	< 0.5	<1	

Explanation:

TPPH(G) = Total Purgeable Petroleum Hydrocarbons as Gasoline ppb = parts per billion --- = Not analyzed/Not applicable

Table 6. Analytical Results for Ground Water - Oxygenates - Redwood Oil Service Station #102, 7716 Old Redwood Highway, Cotati, California.

Sample ID	Sample Date	t-Butyl alcohol (TBA)	MTBE	Diisopropyl ether (DIPE)		t-Amyl methyl ether (TAME)	Notes
		<		ppb			,
MW-1	9/14/1998	<250					
	3/25/1999		320,000				
	9/9/1999						Separate phase product present in well.
	_	,			_		<u></u>
MW-1A	3/26/2001	800	,				
	6/19/2001	<1,000	6,600	<250			
	9/7/2001	<2,000	6,400	< 500			
	12/4/2001	<1,000	4,300	<250			
	2/26/2002	<2,000	3,400	< 500			
	5/17/2002	<2,000	3,100	<10			
	8/29/2002	<1,000	4,600	<250			
	11/26/2002	300	4,700	<1	<1	18	
	2/20/2003	< 200	1,700	<1	<1	5	
	5/23/2003	< 200	850	<1	<1	2	
	8/20/2003	670	1,300	<1	<1	4	
	11/20/2003	1,400	120	<25	<25	<25	
	5/12/2004	1,200	8.2	<25	<25	<25	
	11/10/2004	1,300	8.5	<25			
	5/11/2005	1,200	14	<25	<25	<25	
MW-2	9/9/1999						Separate phase product present in well.
	•	•			•		
MW-2A	3/26/2001	1,500	2,800	< 500	< 500	< 500	
	6/19/2001	<1,000	4,200	<250	<250	<250	
	9/7/2001	<2,000	5,000	< 500	< 500	< 500	
	12/4/2001	<400	3,100	<100	<100	<100	
	2/26/2002	300	2,600	< 50	< 50	< 50	
	5/17/2002	<2,000	2,200	<10	<10	<10	
	8/29/2002	<1,000	4,600	<250	<250	<250	
	11/26/2002	210	2,000	<1	<1	6	
	2/20/2003	< 200	790	<1	<1	2	
	5/23/2003	240	1,800	<1	<1	5	
	8/20/2003	760	2,100	<1	<1	7	
	11/20/2003	660	270	< 50	< 50	< 50	

Table 6. Analytical Results for Ground Water - Oxygenates - Redwood Oil Service Station #102, 7716 Old Redwood Highway, Cotati, California.

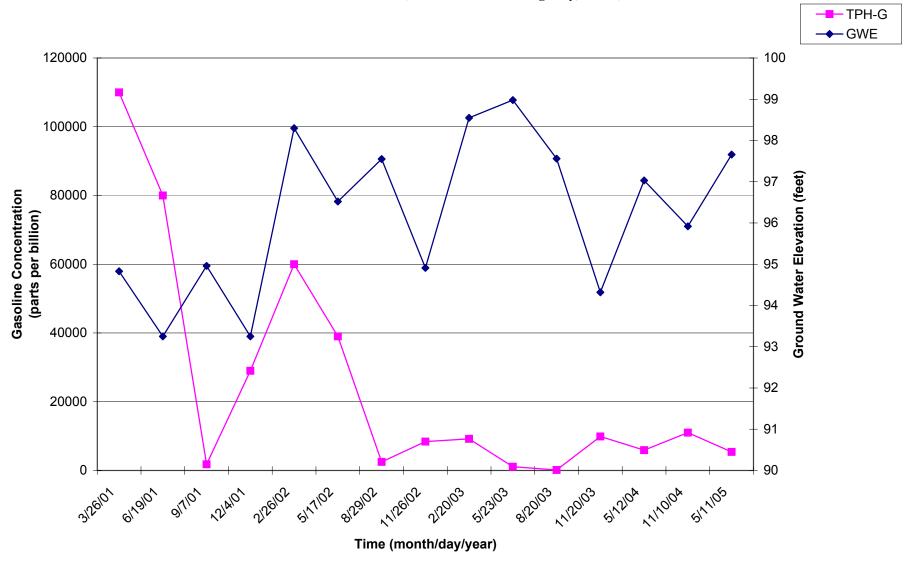
Sample ID	Sample Date	t-Butyl alcohol (TBA)	MTBE	Diisopropyl ether (DIPE)		t-Amyl methyl ether (TAME)	Notes
		<		ppb			·
MW-2A cont.	5/12/2004	< 200	77	<100	<100	<100	
	11/10/2004	820	51	<100	<100	<100	
	5/11/2005	260	31	<100	<100	<100	
MW-3	9/14/1998		<1	<5	<5	<1	
	3/25/1999		120,000				
	9/9/1999		74,000				
	3/21/2000		33,000				
	10/2/2000		75,000				
	3/26/2001	3,900	28,000	< 500	< 500	< 500	
	6/19/2001	<10,000	60,000	<2,500	<2,500	<2,500	
	9/7/2001	<10,000	47,000	<2,500	<2,500	<2,500	
	12/4/2001	<10,000	47,000	<2,500	<2,500	<2,500	
	2/26/2002	<10,000	41,000	<2,500	<2,500	<2,500	
	5/17/2002	<20,000	30,000	<100	<100	<100	
	8/29/2002	<10,000	33,000	<2,500	<2,500	<2,500	
	11/26/2002	990	34,000	<1	<1	120	
	2/20/2003	1,200	27,000	<1	<1	110	
	5/23/2003	3,400	23,000	<1	<1	83	
	8/20/2003	12,000	49,000	<10	<10	110	
	11/20//03	<4,000	18,000	<2,000	<2,000	<2,000	
	5/12/2004	5,200	40,000	<2,500	<2,500	<2,500	
	11/10/2004	5,000	12,000	<2,000	<2,000	<2,000	
	5/11/2005	9,000	28,000	<2,500	<2,500	<2,500	
MW-4	5/4/2000		< 2.0				
	10/2/2000		< 0.5				
	3/26/2001	<10.0	< 2.0	< 5.0	< 5.0	< 5.0	
	6/19/2001	<20	< 5.0	< 5.0	< 5.0	< 5.0	
	2/26/2002	<20	5.3	<5	<5	<5	
	5/24/2002	<20	<5	<5	<5	<5	
	8/29/2002	<20	38	<5	<5	<5	
	11/26/2002	< 200	37	<1	<1	<1	
	2/20/2003	< 200	<1	<1	<1	<1	

Table 6. Analytical Results for Ground Water - Oxygenates - Redwood Oil Service Station #102, 7716 Old Redwood Highway, Cotati, California.

Sample ID	Sample Date	t-Butyl alcohol (TBA)		Diisopropyl ether (DIPE)	ether (ETBE)	ether (TAME)	Notes
		<		ppb	·	· >	}
MW-4 cont.	5/23/2003						
	8/20/2003	< 200	<1	<1	<1	<1	
	11/20/2003	<10	1.6				
	5/12/2004		<1	<5			
	11/10/2004			<5			
	5/11/2005	<10	<1	<5	<5	<5	
	_				_		
MW-5	11/26/2002		1	<1		<1	
	2/20/2003		<1	<1		<1	
	5/23/2003		<1	<1	<1	<1	
	8/20/2003			_	_		
	11/20/2003			<5			
	2/23/2004		1.4	<5			
	5/12/2004		1.2	<5			
	8/23/2004		<1	<5			
	11/10/2004		<1	<5			
	2/22/2005		<1	<5			
	5/11/2005		1.1	<5			
	8/11/2005	<10	<1.0	<5.0	<5.0	<5.0	
	_						_
MW-6	11/26/2002		<1	<1			
	2/20/2003	< 200	<1	<1		<1	
	5/23/2003		<1	<1	<1	<1	
	8/20/2003	< 200	<1	<1		<1	
	11/20/2003		4.2	<5			
	2/23/2004		5.8				
	5/12/2004		<1	<5			
	8/23/2004		<1	<5			
	11/10/2004			<5			
	2/22/2005			<5			
	5/11/2005			<10			
	8/11/2005	<10	<1.0	<5.0	<5.0	<5.0	

Table 6. Analytical Results for Ground Water - Oxygenates - Redwood Oil Service Station #102, 7716 Old Redwood Highway, Cotati, California.

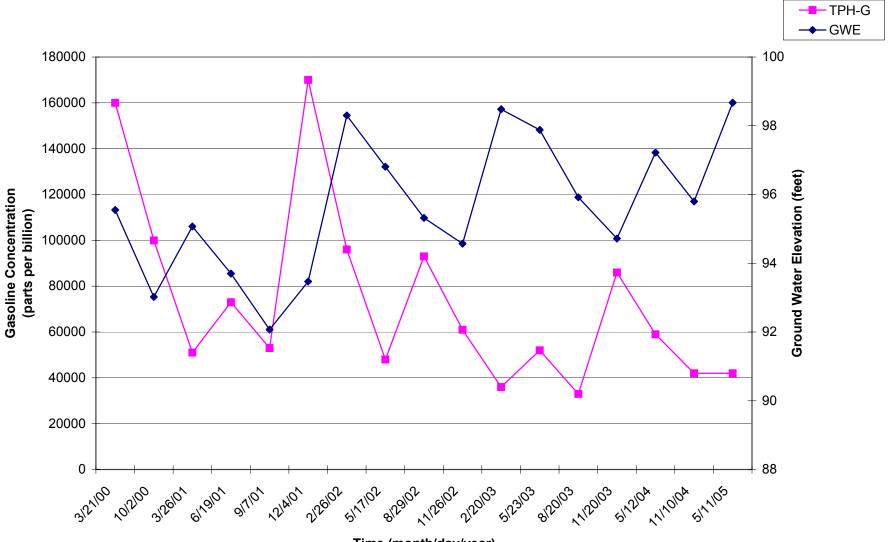
Sample ID	Sample Date	t-Butyl alcohol (TBA)				t-Amyl methyl ether (TAME)	Notes
		<		ppb			<u>}</u>
MW-7A	4/27/2005	<5,000	24,000	<2500	<2,500	<2,500	Т
IVI VV - / A	8/11/2005	,	29,000		< 5,000		
	•		,				
MW-7B	4/27/2005			<5			
	8/11/2005	<10	23	<5.0	<5.0	<5.0	
MW-8A	4/27/2005	<10	2.1	<5	<5	<5	T
	8/11/2005		13	<5.0	<5.0		
MANY OD	1/27/2005	-10	1.2	اير.	-5		Т
MW-8B	4/27/2005 8/11/2005		1.3 8.6	<5.0			· · · · · · · · · · · · · · · · · · ·
	8/11/2005	<10	8.0	<2.0	<5.0	<5.0	
CPT1@20'	10/16/2002	<4,000	31,000	<2,000	<2,000	<2,000	
CPT1@48'	10/16/2002		99	<5	<5		
CPT1@64'	10/16/2002	<10	10	<5	<5	<5	
CPT2@50'	10/16/2003	<10	<1	<5	<5	<5	T
CPT2@75'	10/16/2003		<1	<5	<5		
CPT3@45'	10/17/2003		28	<5			
CPT3@73'	10/17/2003	190	670	<50	<50	< 50	<u> </u>
CPT4@45'	10/16/2003	<10	<1	<5	<5	<5	
CPT4@80'	10/17/2003		<1	<5	<5		

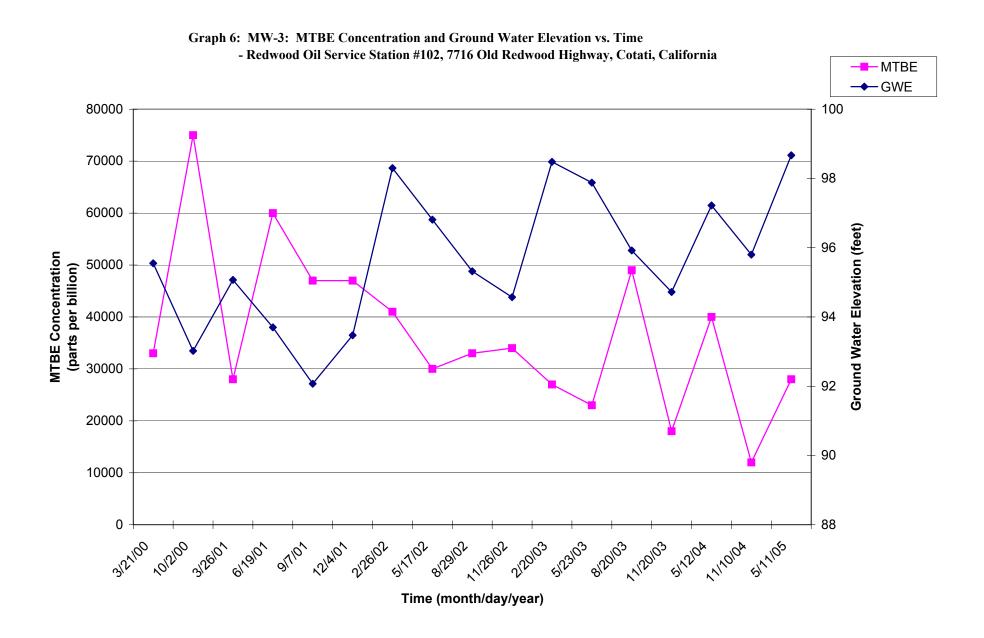

Explanation:

MTBE = Methyl tertiary-butyl ether --- = Not analyzed/Not detected

- Redwood Oil Service Station #102, 7716 Old Redwood Highway, Cotati, California ■ MTBE **→** GWE **Ground Water Elevation (feet) MTBE** Concentration (parts per billion) orno1 8/29/02 872003 112003 5113104 1110104 511105 Time (month/day/year)

Graph 2: MW-1A: MTBE Concentration and Ground Water Elevation vs. Time


Graph 3: MW-2A: Gasoline Concentration and Ground Water Elevation vs. Time
- Redwood Oil Service Station #102, 7716 Old Redwood Highway, Cotati, California


Graph 4: MW-2A: MTBE Concentration and Ground Water Elevation vs. Time - Redwood Oil Service Station #102, 7716 Old Redwood Highway, Cotati, California **─**MTBE **→** GWE 6000 100 99 5000 98 **Ground Water Elevation (feet)** 97 4000 MTBE Concentration (parts per billion) 96 95 94 2000 93 92 1000 91 90 0 812003 1120103 8172104 1110104 8111105 31280, 81310, 3110, 15140, 51505, 21,105 Time (month/day/year)

Page 1

Graph 5: MW-3: Gasoline Concentration and Ground Water Elevation vs. Time
- Redwood Oil Service Station #102, 7716 Old Redwood Highway, Cotati, California

Time (month/day/year)

Graph 1: MW-1A: Gasoline Concentration and Ground Water Elevation vs. Time - Redwood Oil Service Station #102, 7716 Old Redwood Highway, Cotati, California TPH-G **→** GWE Ground Water Elevation (feet) **Gasoline Concentration** (barts ber pillion) 300000 250000 200000 312810, 91310, 3110, 151410, 5158105 211105 8153105 812003 1120103 8112104 1110104 811,1105 Time (month/year)

Page 1

Calculation 1: Estimate of Hydrocarbon Mass in Soil

The following assumptions have been made to calculate the mass of hydrocarbons in soil:

- 1.) Approximate area of impacted soil in saturated zone \approx 100 ft x 100 ft (approx. 10,000 ft²).
- 2.) Approximate vertical extent of impacted soil in saturated zone is 8 ft to 12 ft bgs.
- 3.) Approximate area of impacted soil in unsaturated zone is 90 ft x 10 ft (approx. 900 ft²).
- 4.) Approximate vertical extent of impacted soil in unsaturated zone is 4 ft to 8 ft bgs.
- 5.) Approximate mass of impacted soil is 1,800 kg/cubic yard.
- 6.) 27 samples (from Table 2, Appendix B) located within the saturated impacted area are assumed to be representative. All samples are between the depths of 8 and 10 ft bgs. Samples are: OXS-2 through OXS-4; OXS-8 through OXS-15; and OXS-17 through OXS-32.
- 7.) Six samples (from Table 2, Appendix B) located at the border of the unsaturated impacted area are assumed to be representative. Samples are OXS-27 through OXS-32

Approximate volume of impacted soil in the saturated zone is calculated to be 1,500 CY. Approximate mass of impacted soil in the saturated zone is calculated to be 2.7 x 10⁶ kg. Approximate volume of impacted soil in the unsaturated zone is calculated to be 130 CY. Approximate mass of impacted soil in the unsaturated zone is calculated to be 2.4 x 10⁵ kg.

Average concentration of hydrocarbons in saturated soil, based on gasoline concentrations of the 27 representative samples, is calculated to be 3,200 mg/kg.

Average concentration of hydrocarbons in unsaturated soil, based on gasoline concentrations of the 6 representative samples, is calculated to be 3,000 mg/kg.

Total estimated mass of hydrocarbons in saturated soil:

$$2.7 \times 10^6 \text{ kg soil x } 3,200 \text{ mg/kg} \approx 8,600 \text{ kg}$$

Total estimated mass of hydrocarbons in unsaturated soil:

$$2.4 \times 10^5 \text{ kg soil x } 3,000 \text{ mg/kg} \approx 720 \text{ kg}$$

Total estimated mass of hydrocarbons at site ≈ 9,300 kg

As an order of magnitude estimate, this figure should be considered to have an accuracy of no greater than 50%. The possible estimated mass of hydrocarbons in soil should therefore be expressed as a range of between 4,500 kg and 14,000 kg.

Calculation 2: Estimate of Hydrocarbon Mass in Groundwater

The following assumptions have been made to calculate the mass of hydrocarbons in groundwater:

- 1.) Approximate area of groundwater plume = $200 \text{ ft x } 200 \text{ ft (Approx. } 4,000 \text{ ft}^2).$
- 2.) Approximate vertical extent of groundwater plume, based on data from MW-7 and MW-8 (Table 4, Appendix B) is 5 ft to 60 ft bgs.
- 3.) Average concentration of hydrocarbons as gasoline in the groundwater plume, based on most recent data from MW-1A, MW-2A, MW-3, MW-7A, and MW-8A (Table 5, Appendix A) is 14,500 ppb (μg/l).
- 4.) Average porosity of plume, based on variable soil types, is assumed to be 0.35.

Total volume of groundwater in plume is approximately 2.2 x 10⁶ liters.

Total mass of hydrocarbons in groundwater:

 2.2×10^6 liters x 14,500 µg/l \approx 32 kg.

APPENDIX C GROUNDWATER ELEVATION CONTOUR MAPS

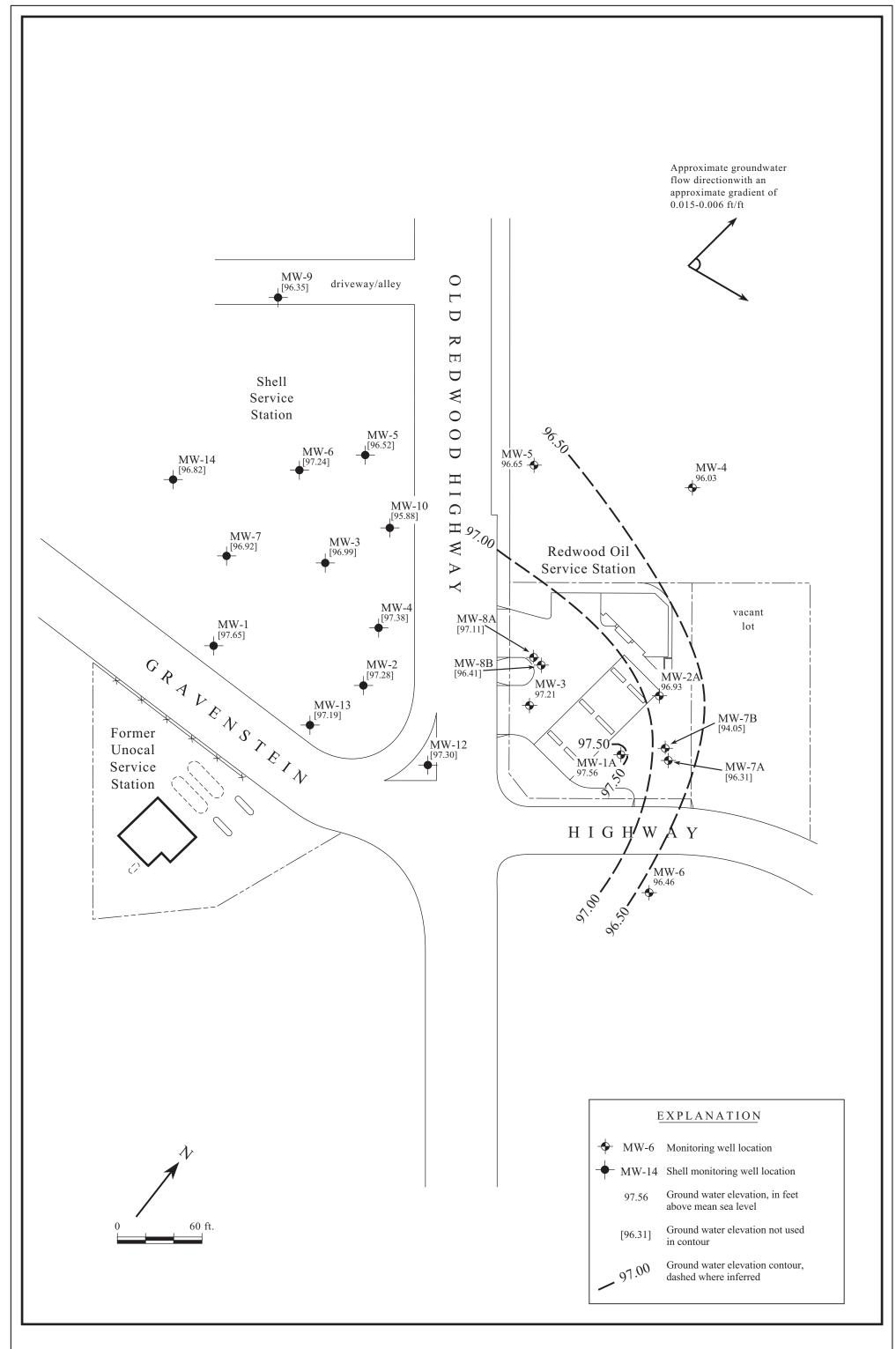


Figure 2. Monitoring Well Locations and Ground Water Elevation Contour Map - August 11, 2005 - Redwood Oil Service Station #102, 7716 Old Redwood, Cotati, California

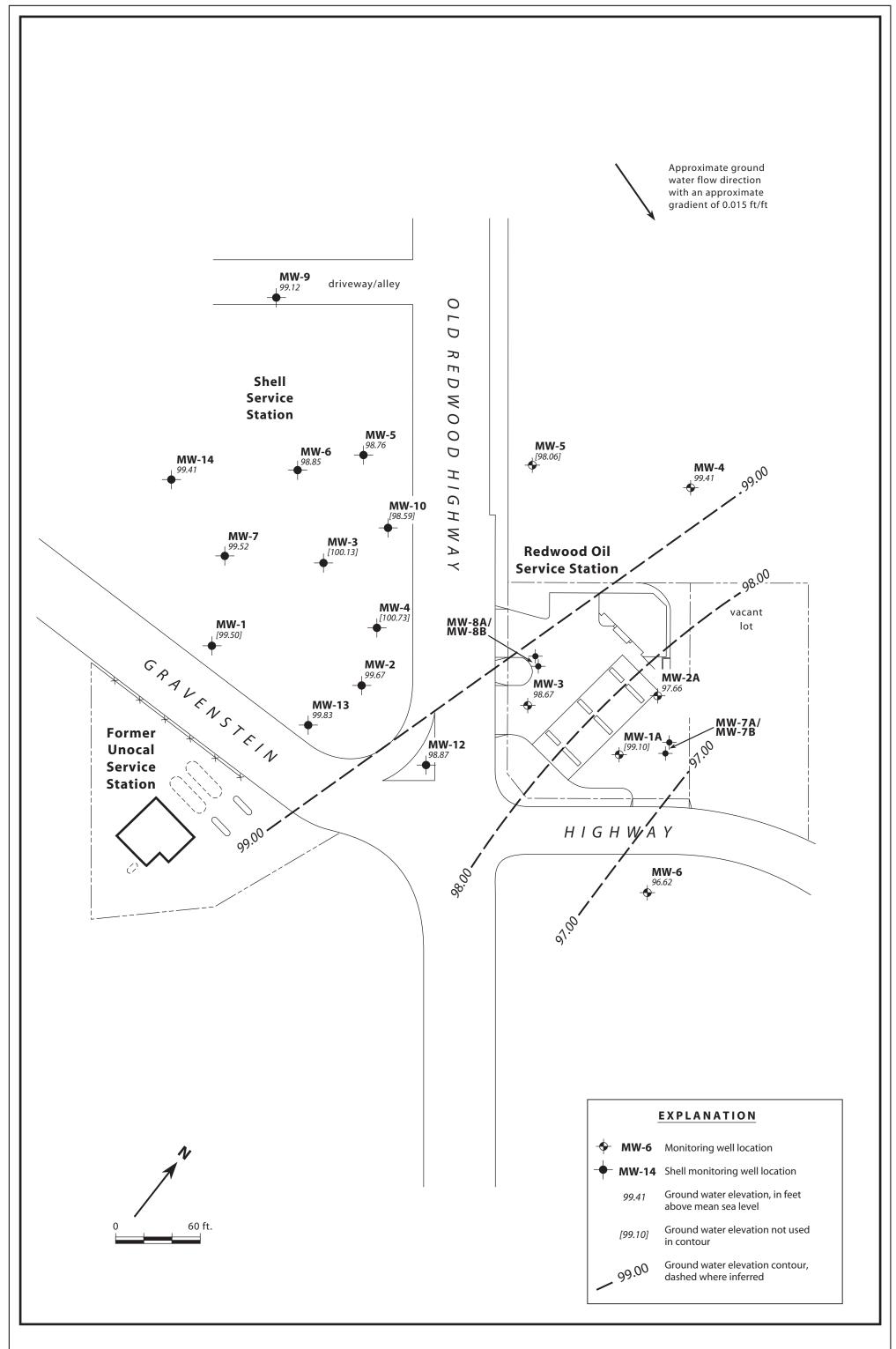


Figure 2. Monitoring Well Locations and Ground Water Elevation Contour Map - May 11, 2005 - Redwood Oil Service Station #102, 7716 Old Redwood, Cotati, California

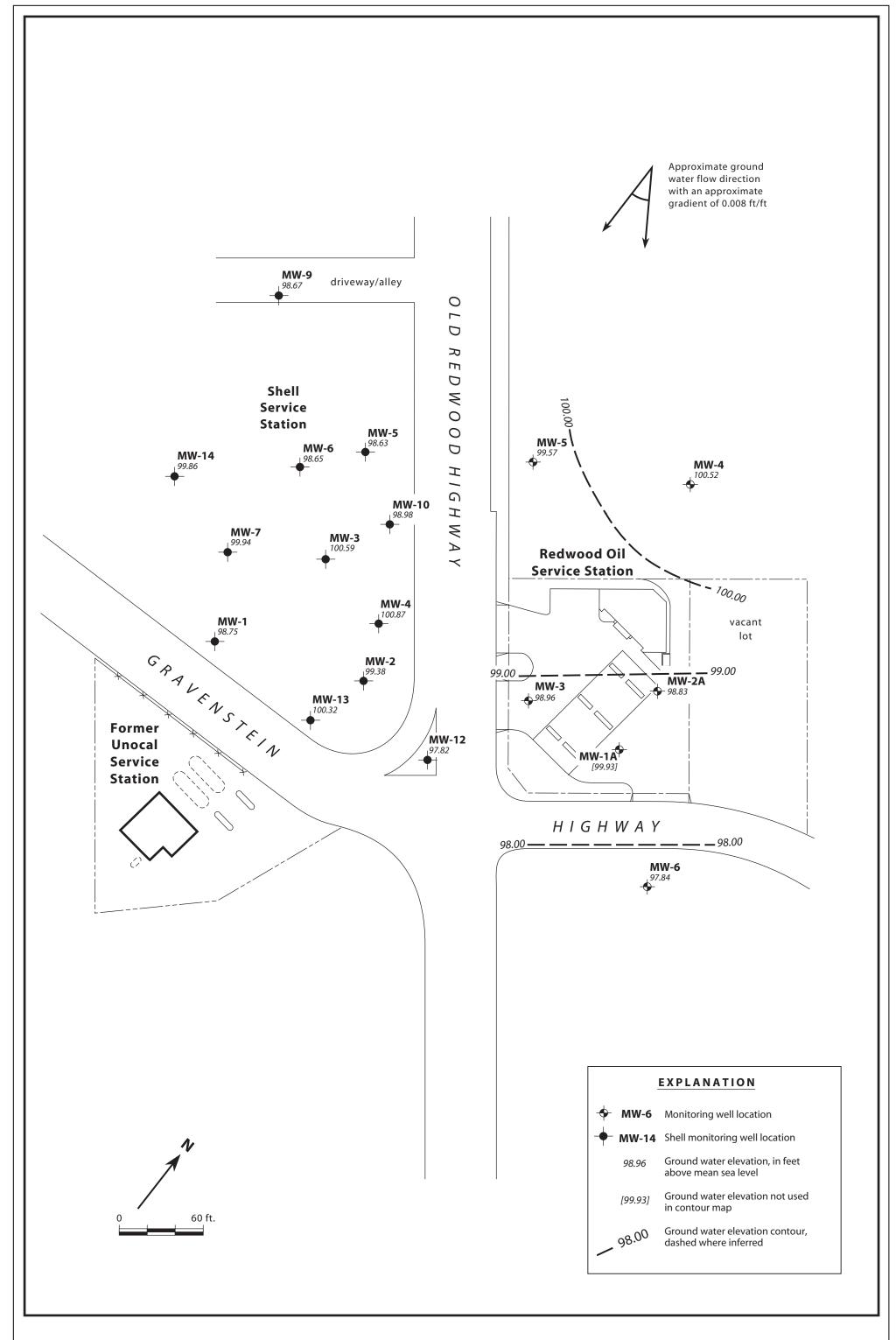


Figure 2. Monitoring Well Locations and Ground Water Elevation Contour Map - February 22, 2005 - Redwood Oil Service Station #102, 7716 Old Redwood, Cotati, California

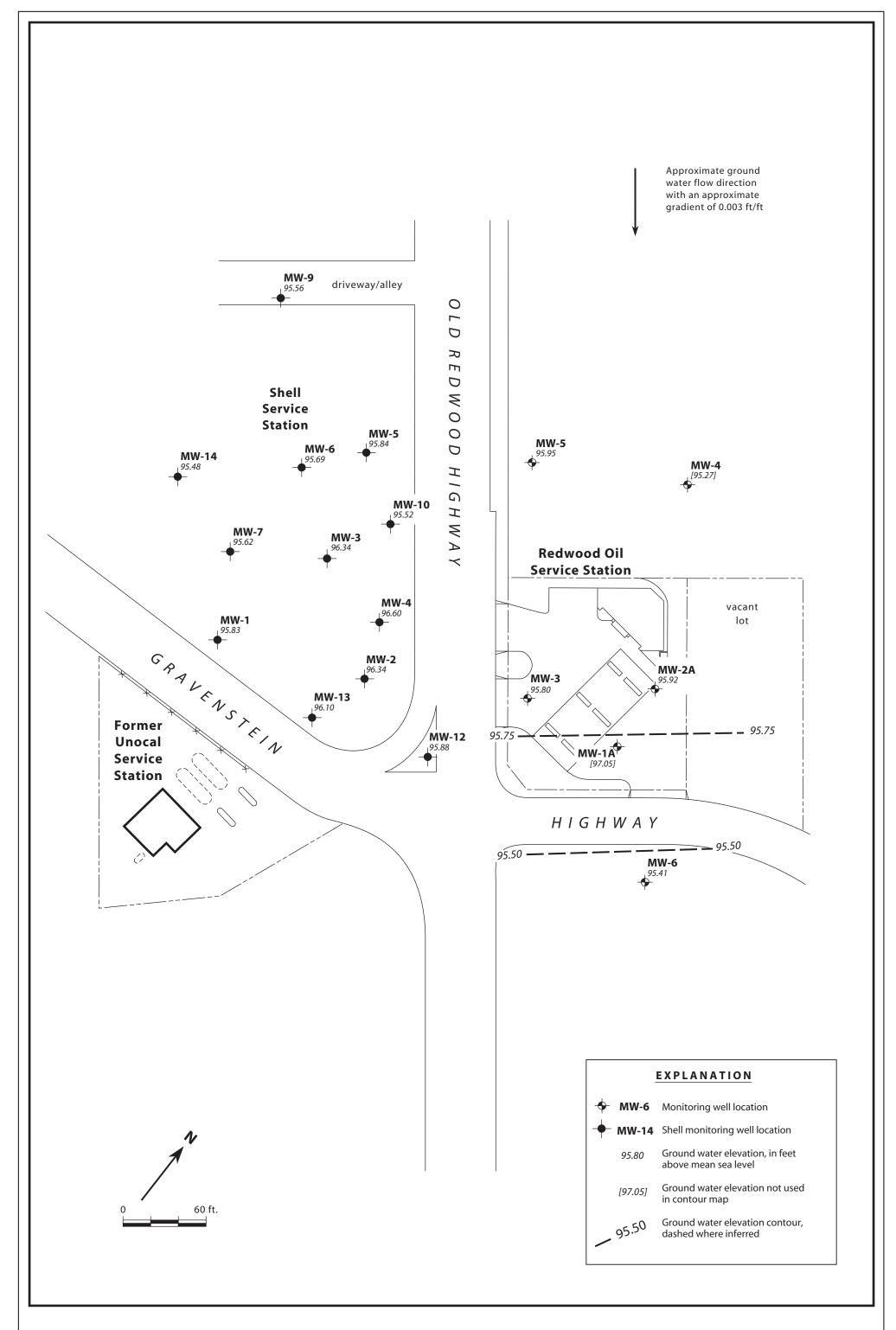


Figure 2. Monitoring Well Locations and Ground Water Elevation Contour Map - November 10, 2004 - Redwood Oil Service Station #102, 7716 Old Redwood, Cotati, California

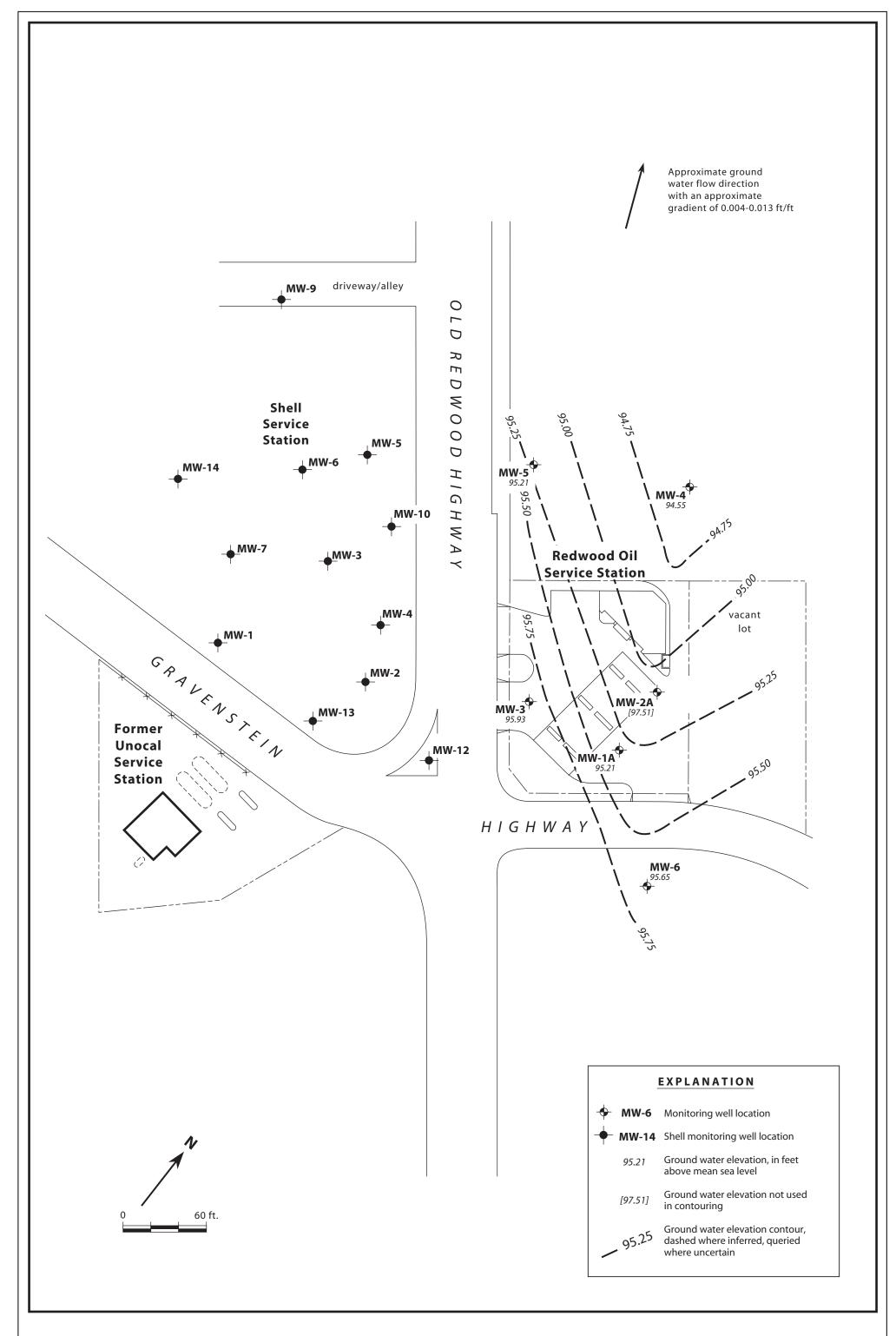


Figure 2. Monitoring Well Locations and Ground Water Elevation Contour Map - August 23, 2004 - Redwood Oil Service Station #102, 7716 Old Redwood, Cotati, California

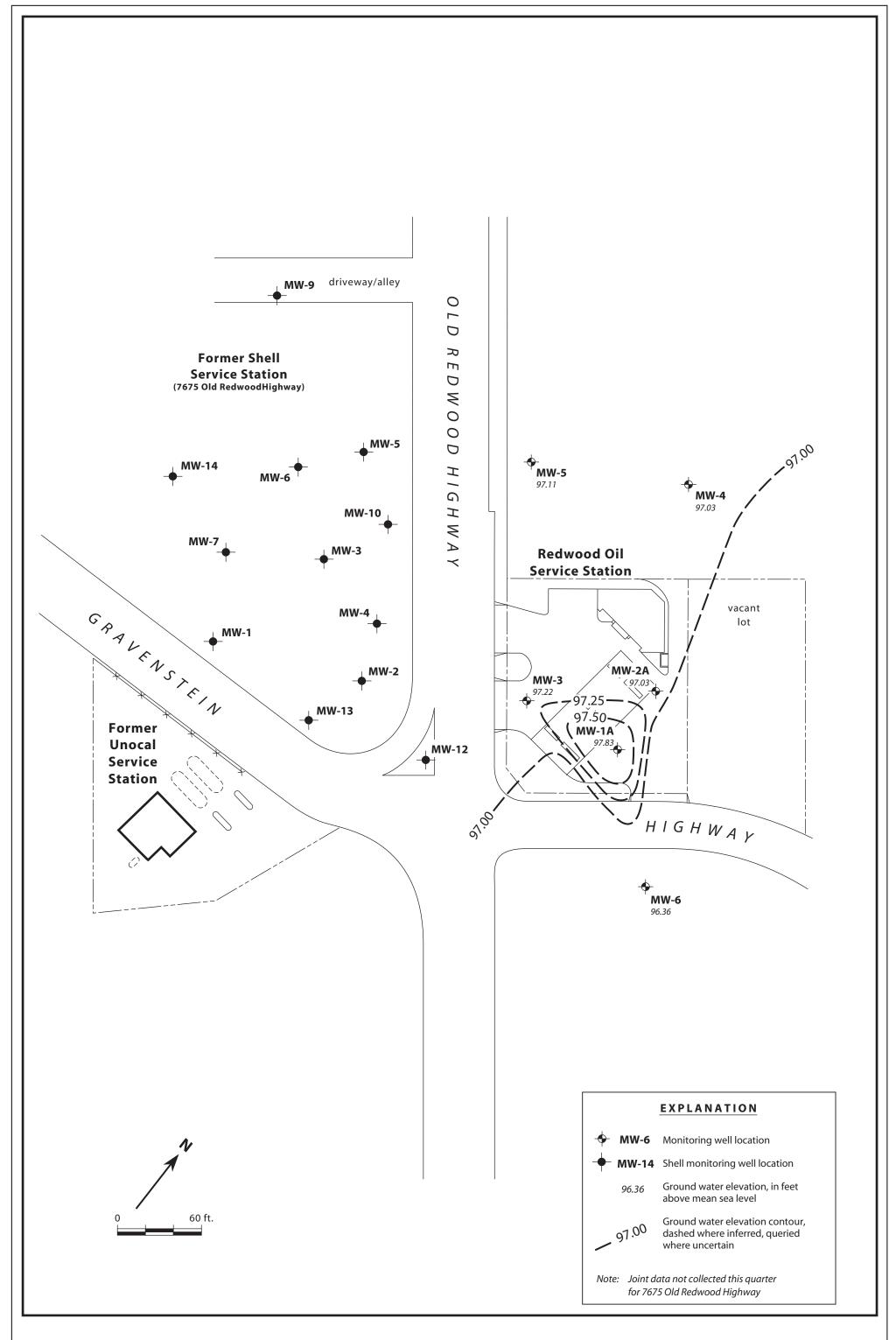


Figure 2. Monitoring Well Locations and Ground Water Elevation Contour Map - May 12, 2004 - Redwood Oil Service Station #102, 7716 Old Redwood, Cotati, California

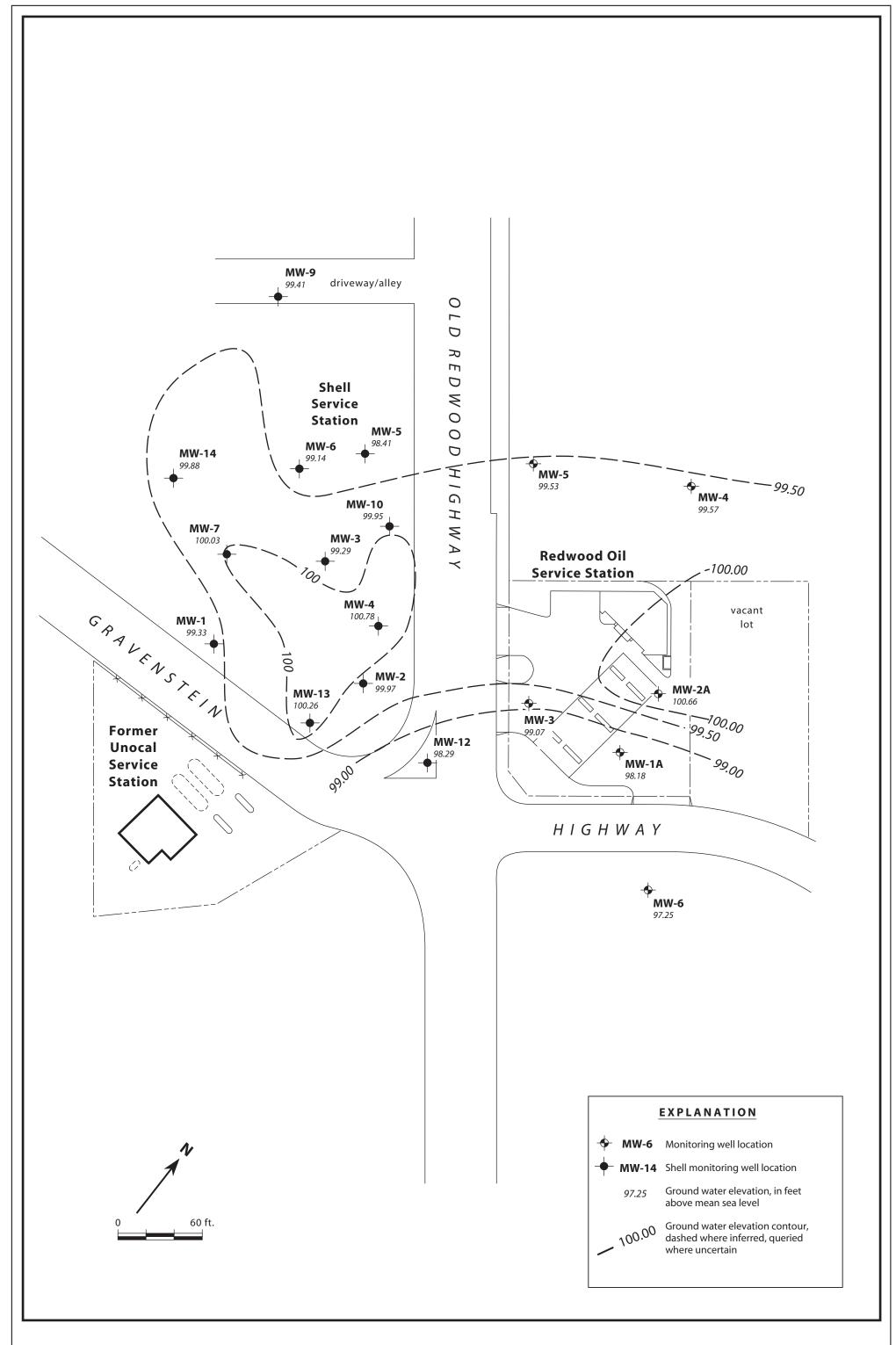


Figure 2. Monitoring Well Locations and Ground Water Elevation Contour Map - February 23, 2004 - Redwood Oil Service Station #102, 7716 Old Redwood, Cotati, California

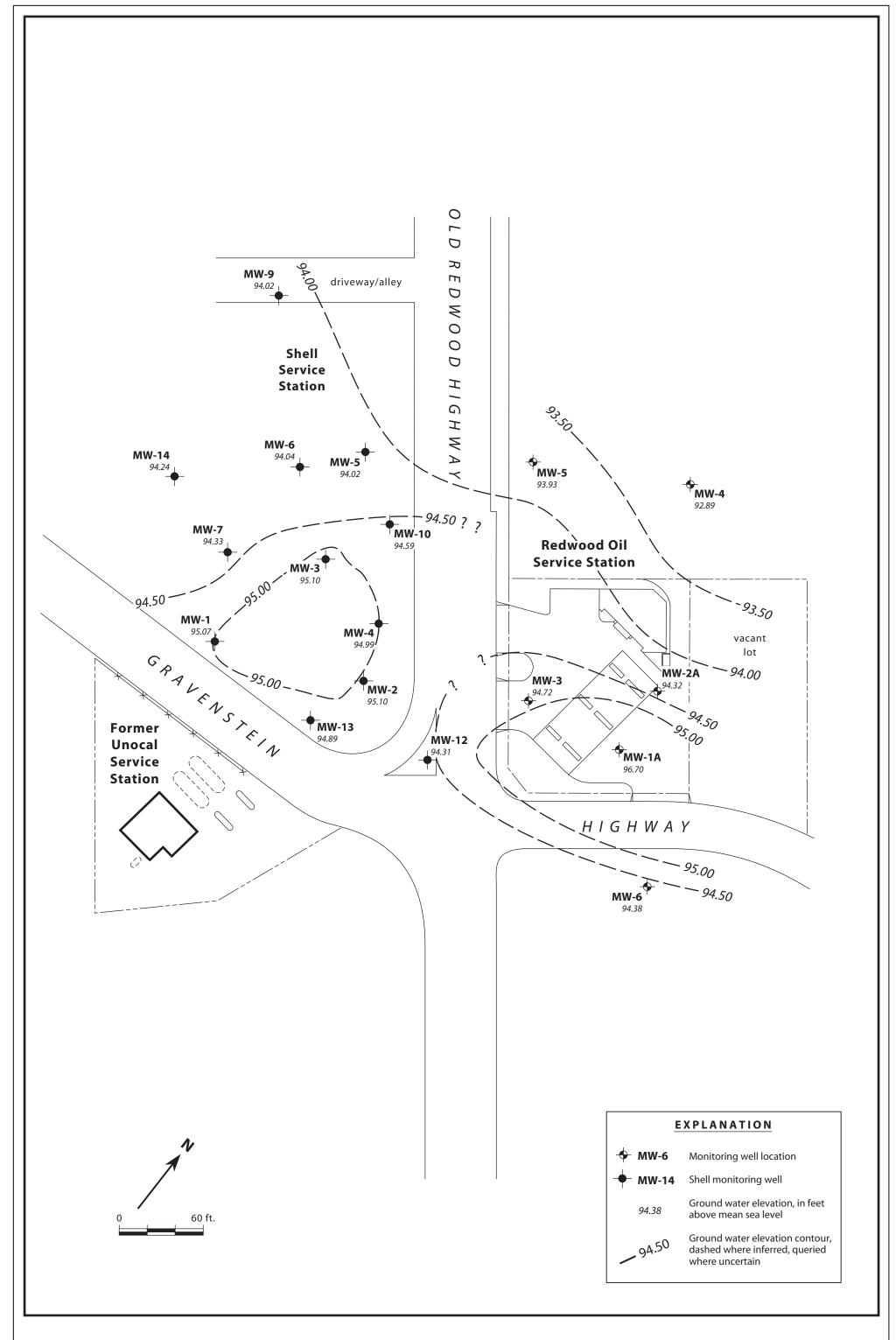


Figure 2. Monitoring Well Locations and Ground Water Elevation Contour Map - November 20, 2003 - Redwood Oil Service Station #102, 7716 Old Redwood, Cotati, California

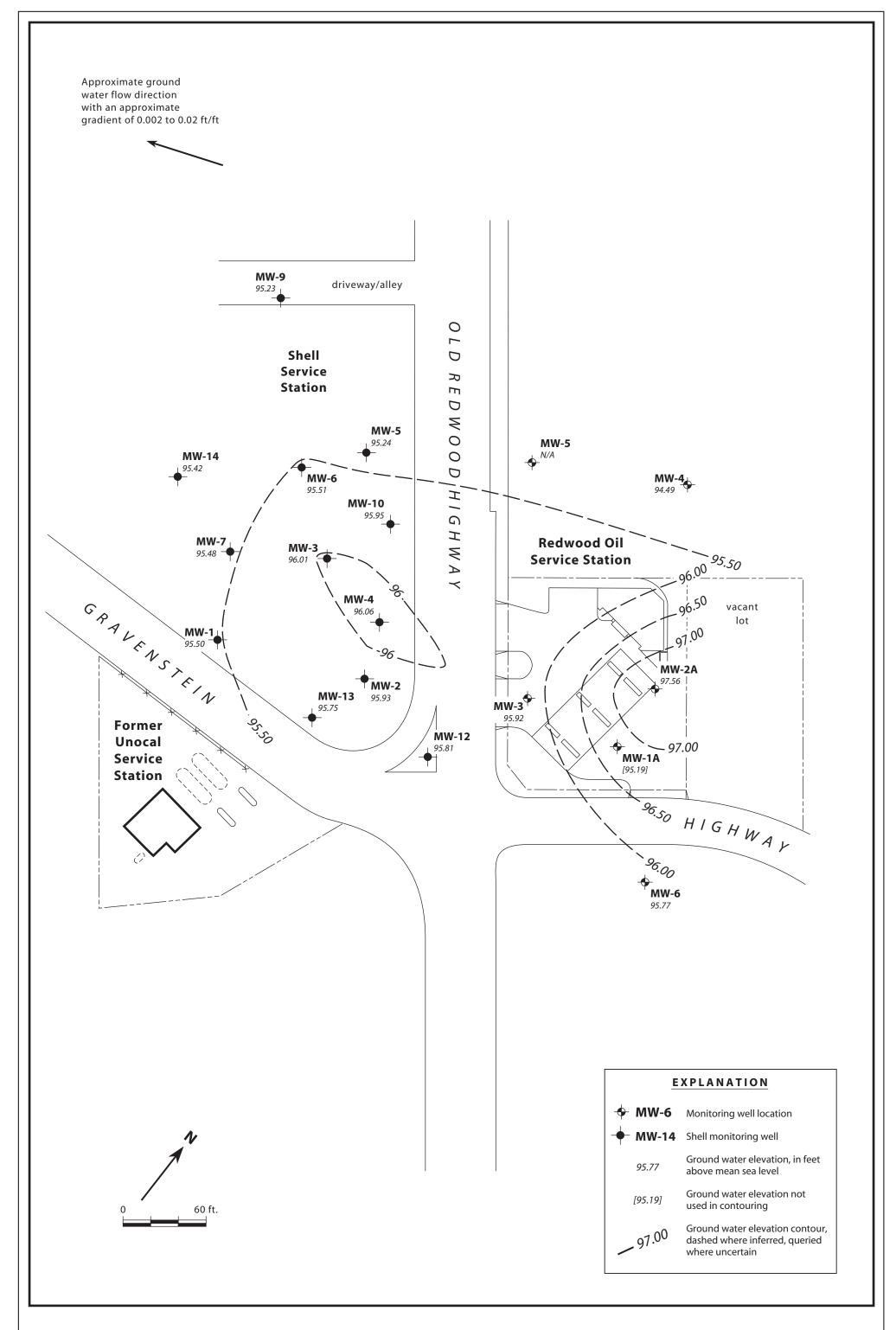


Figure 2. Monitoring Well Locations and Ground Water Elevation Contour Map - August 20, 2003 - Redwood Oil Service Station #102, 7716 Old Redwood, Cotati, California

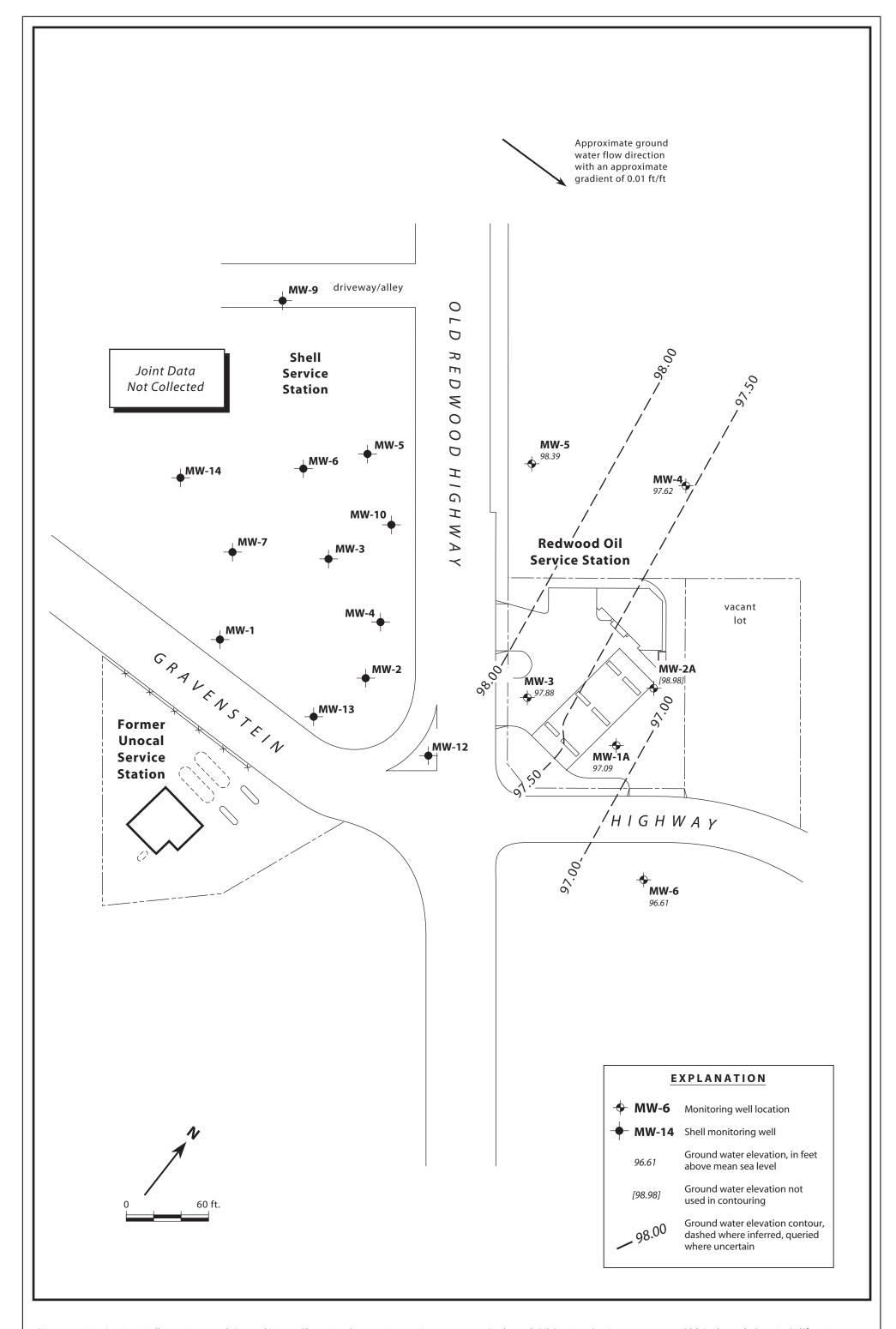


Figure 2. Monitoring Well Locations and Ground Water Elevation Contour Map - May 23, 2003 - Redwood Oil Service Station #102, 7716 Old Redwood, Cotati, California

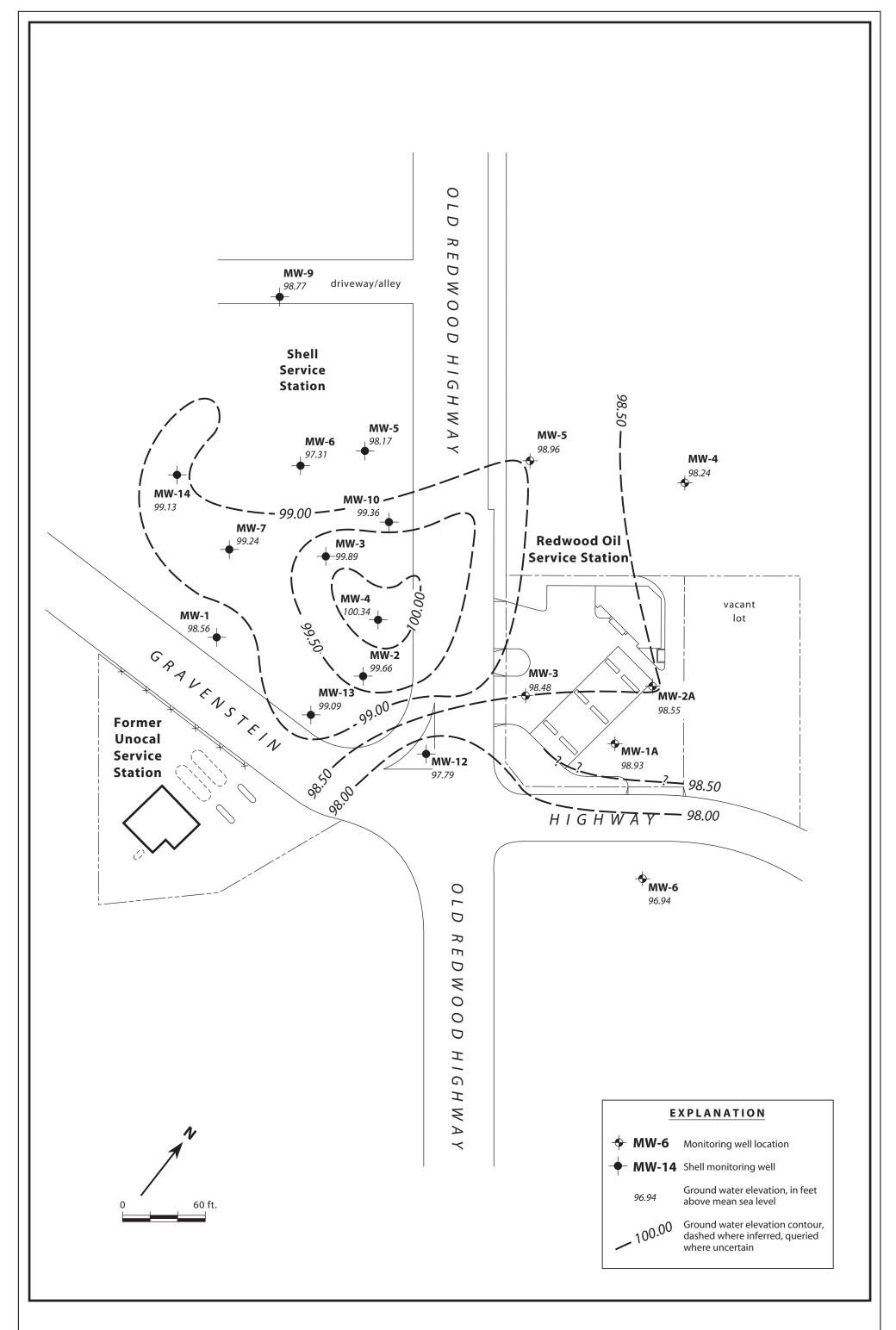
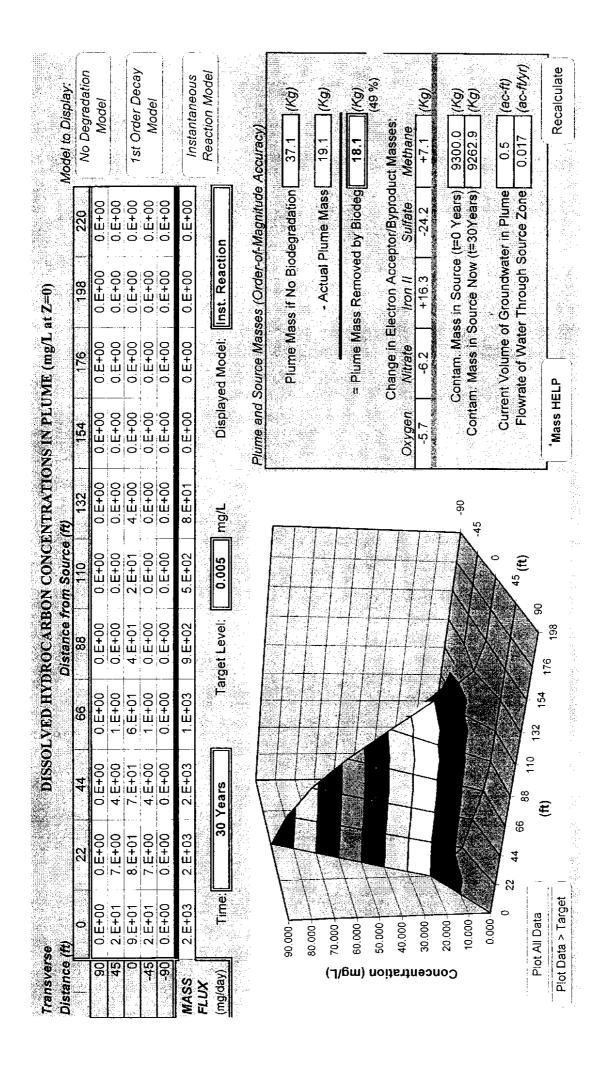
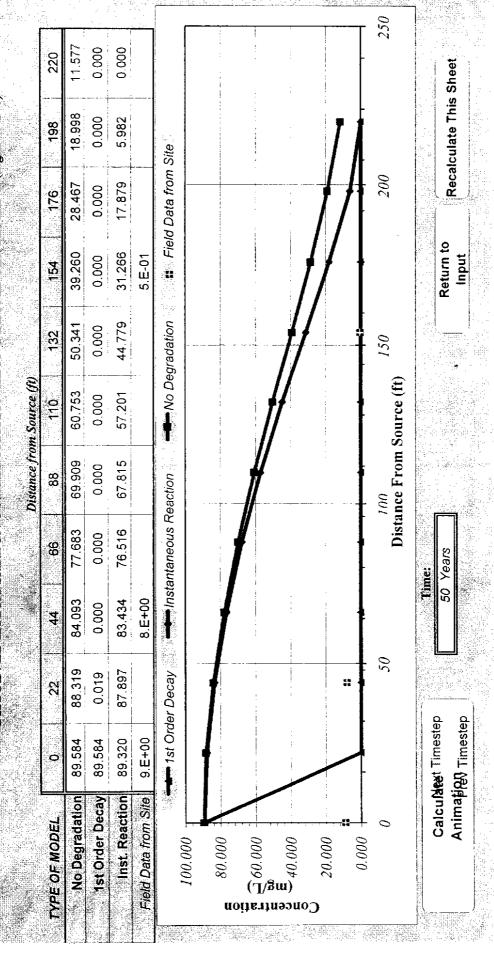



Figure 2. Monitoring Well Locations and Ground Water Elevation Contour Map - February 20, 2003 - Redwood Oil Service Station #102, 7716 Old Redwood, Cotati, California

APPENDIX D BIOSCREEN MODELING RESULTS

DISSOLVED HYDROCARBON CONCENTRATION ALONG PLUME CENTERLINE (mg/L at Z=0)


No Degradation 89.750 44 86 88 110 132 154 176 198 220 220 No Degradation 89.750 84.525 75.487 62.000 46.192 30.526 17.531 8.603 3.570 1.239 0.357 3.6000 3.6000 3.6000 3.6000 3.6000 3.6000 3.6000 3.6000 3.6000						Distance from	Distance from Source (ft)						
89.750 84.525 75.487 62.000 46.192 30.526 17.531 8.608 3.570 1.239 0.357 89.750 0.019 0.000 0.00	EOFMODEL	0	22	44	99	88	110	132	154	176	198	220	
89.550 0.019 0.000	No Degradation		84.525	75.487	62.000	46.192	30.526	17.531	8.608	3.570	1.239	0.357	
89.591 83.400 73.078 57.413 38.620 19.631 3.639 0.000 0.000 0.000 0.000 9.E+00 8.E+00	1st Order Decay		0.019	0.000	0.000	0.00	0.000	0.000	0.000	0.000	0.000	0.000	
1st Order Decay Seaction Reaction Reaction Site No Degradation Site Site Site Site Site Site Site Site	Inst. Reaction		83.400	73.078	57.413	38.620	19.631	3.639	0.000	0.000	0.00	0.000	
ii Field Data from Site (it) 50 Distance From Source (it)	Id Data from Site	! !	; !	8.E+00					5.E-01	· ·			
# # # # # # # # # # # # # # # # # # #		🕶 1st Order D		- Instant	aneous Read	ction	No Degra	dation	Field L	Jata from Si.	[e]		1
ii iii iii iii iii iii iii iii iii iii													
ii	80.000				بسنرست ، سمالارسسسوران مسا					:			
# 150 200 Distance From Source (ft)	J. 60.000												
0 50 Distance From Source (ft)	/8w				//								<u> </u>
0 50 Distance From Source (ft)	40.000				/								- VO 570
0 50 Distance From Source (ft)	20.000						/						
50 100 150 200 Distance From Source (ft)		_	11			<i>,</i>		1	-				Palipa y
Distance From Source (ft)	0.00.0		05	ļ		001		150		νου		,	- Ş
	5		90		Dista	nce From	Source (ft)	OCI		7007		4)))
	Calcul	ßkest Timestep ∺		30	Years				Return to	0	Journal Thi	Chant	
30 Years Return to	Anıma	in Timestep							Input	3 <u>L</u>	שוכחושות יייי	laane si	
<u>30 Years</u>	مدرة ستستنشر بشقصتها والمسادات بمراجد سرحان فيرويون ويؤموه بأرفق	attanta a tanan										The second second	

ctions: Enter value directivor Calcurate by filling in orey cells below. (To restore formulas, bit hillon below)	Variable* — Data used directly in model. 20 — Value calculated by model. (Don't enter any data). Vertical Plane Source: Look at Plume Cross-Section	Widths	View of Plume Looking Down View of Plume Looking Down Observed Centerline Concentrations at Monitoring Wells If No Data Leave Blank or Enter "0"	154	Paste Example Dataset Restore Formulas for Vs,
Data Input Instructions 115 — 1. Ente A or 2. Calc 6002 cells	Variable* — Dar 20 — Valu (Dc	and Input Concentrations & Widths for Zones 1, 2, and 3	View of Plume Looking Down d Centerline Concentrations at Monitor If No Data Leave Blank or Enter "0"	88 110	Help Paste Restor
Cotati Chevron Run Name	(m) w [v) (v) (v) (v) (v) (v) (v) (v) (v) (v) (22 44 66 TOSEE:	RUN ARRAY View Output
ort System	ES S	Source Zones: (mg/L)* 10 0.07 11 25 20 2 20 3 325 20 40 325 20 4 4 40 0.07 6.07 6.007 6.		Concentration (mg/L) 9.0 Dist. from Source (ft) 0 22 8. CHOOSE TYPE OF OUTPUT TO SEE:	RUN SENTERLINE View Output
cision Support Syst Version 1.4 5. GENERAL Modeled Area Lenath	Mode Simu	Source Zones: Width* (ff) Conc. (10 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0			
nuation Dec	5.0E-05 (cm/sec) (0.016 (ff/ft) (1.)	11.7 (ft) 1.2 (ft) 1.5 or (ft) 220 (ft)	1.3 (-) 1.7 (kg/l) 38 (L/kg) 8.0E-4 (-)	6.9E+0 (per yr)	
ural Atte mental Excel	, X , L	alphaix alphaiz alphaiz	\$ \text{VO SQ } \text{QQ }	lambde t-half	ion Model DO NO3 Fe2+
BIOSCREEN Natural Attenuation Decision Support System Air Force Center for Environmental Excellence 1. HYDRÖGEOLOGY Seenade Velocity* Vs. 4.1 (ff/vi) Modeled Area Length*	or Hydraulic Conductivity Hydraulic Gradient Porosity	2. DISPERSION Longitudinal Dispersivity* Transverse Dispersivity* Vertical Dispersivity* or Estimated Plume Length	3. ADSORPTION Retardation Factor* or Soil Bulk Density Partition Coefficient FractionOrganicCarbon	4. BIODEGRADATION 1st Order Decay Coeff* or Solute Half-life	or Instantaneous Reaction Model Delta Oxygen* DO Delta Nitrate* NO3 Observed Ferrous Iron* Fe2+

Data Input Instructions. 115 —1. Enter value directivor An or 2. Calculate by filling in grey cells below. (To restore formulas, hit button below). Variable* — Data used directly in model. 20 — Value calculated by model. (Don't enter any data). Vertical Plane Source: Look at Plume Cross-Section	and Input Concentrations & Widths for Zones 1, 2, and 3	View of Plume Looking Down Usew of Plume Looking Down Observed Centerline Concentrations at Monitoring Wells If No Data Leeve Blank of Enter "0"	88 110 132 154 176 198 220	Help Sheet Sheet Paste Example Dataset Restore Formulas for Vs, Dispersivities, R, lambda, other
Pigent System NERAL Pol Area Length* Sol Area Width* Sol (yr) URCE DATA Discussion Sati Zone* 8 (ft)	- 2 % 4 °C	Source Halfilfe (see Help):	Concentration (mg/L) 9.0 8.0 Dist. from Source (ft) 0 22 44 66 8 CHOOSE TYPE OF OUTPUT TO SEE:	RUN ARRAY View Output View Output
tentuation Decision (cellance): 4.1 (ft/y) (f. or 5.0E-05 (cm/sec) (0.046 (frft) 6.046 (frft)	1.2 (f) 1.2 (f) 1.2 (f) 1.2 (f)	So 1.3 (-) 1.7 (<i>Kg/l</i>) 8.0E-4 (-) 7.	6.9E+0 ↑ nr	94 5.78 (mg/L) 6.3 (mg/L) 16.6 (mg/L) 7.2 (mg/L)
BIOSGREEN Natural Attenuation Decision Surveyore Center for Environmental Excellence 4. Force Center for Environmental Excellence 4. HYDROGEOLOGY Seepage Velocity* 6. GE Sepage Velocity* 6. GE Frydraulic Gradient: 7. O 046 6. SO Porosity 7. S. GE Secpage Velocity (###) 8. So Porosity 7. S. GE Secpage Velocity (###) 8. So Porosity 8. So Simula Porosity 8. So Simula Porosity 8. So Simula Porosity 9. So Simula Simula Porosity 9. So Simula Porosity 9. So Simula	2. DISPERSION Longitudinal Dispersivity* alpha x Transverse Dispersivity* alpha y Vertical Dispersivity* alpha y Vertical Dispersivity* alpha z or Estimated Plume Length Lp	3 ADSORPTION Retardation Factor* Or Soil Bulk Density Partition Coefficient Koc FractionOrganicCarbon foc	SATION Coeff*	or Instantaneous Reaction Model or Instantaneous Reaction Model Delta Oxygen* Delta Nitrale* Observed Ferrous Iron* Fe2+ Delta Suifate* SO4 Observed Methane* CH4

DISSOLVED HYDROCARBON CONCENTRATION ALONG PLUME CENTERLINE (mg/L at Z=0)

Model to Display:	No Degradation	Model	And the second s	1st Order Decay	Model		Instantaneous	Reaction Model	of the official formation and the same and t		. Accuracy)	61.8 (Kg)	33.1 (Kg)	28.7	(46 %)	uct Masses; Methane	-9.0 -9.9 +26.0 -38.5 +11.3 <i>(Kg)</i>	9300 0 1(Ka)		# C C		Recalculate
	220	0.E+00	0.E+00	0.E+00	0.E+00	0.E+00	0. E +00		on		f-Magnitude	degradation	Actual Plume Mass	d by Biodeg		ptor/Byprod Sulfate	-38.5	(t=0 Years)	(t=50Years)	er in Direct	ource Zone	
it Z=0)	198	0.E+00	0.E+00	6.E+00	0.E+00	0.E+00	1.E+02		Inst. React		ses (Order-c	Plume Mass if No Biodegradation	- Actual F	Plume Mass Removed by Blodeg		ectron Acce	+26.0	S in Source	ource Now		r Through S	
DISSOLVED HYDROCARBON CONCENTRATIONS IN PLUME (mg/L at Z=0) Distance from Source (#)	176	0.E+00	0.E+00	2.E+01	0.E+00	0.E+00	4.E+02	The second second	Displayed Model: Inst. Reaction		Plume and Source Masses (Order-of-Magnitude Accuracy)	Plume Ma		= Plume Ma		Change in Electron Acceptor/Byproduct Masses. Nitrate Iron II Sulfate Methane	-9.9	Contam Mass in Source (t=0 Years)	Contam. Mass in Source Now (t=50Years)	Ourself (Volume of Ground works in Dirms	Flowrate of Water Through Source Zone	ilP
NS IN PLU	154	0.E+00	0.E+00	3.E+01	0.E+00	0.E+00	7.E+02		Display		Plume and					Oxvaen	0.6-	, C	Contan	James	FION	'Mass HELP
NTRATIO	132	0.E+00	2.E+00	4.E+01	2.E+00	0.E+00	1.E+03	etaere e e	mg/L	i i Yekil				in the second	-1		T. a.		-45		,	
N CONCE	1.10	0.E+00	4.E+00	6.E+01	4.E+00	0.E+00	2.E+03		0.005						1					0 7	45 (ft)	
NROCARBON CONCENT Distance from Source (ft	- 88	0.E+00	5.E+00	7.E+01	5.E+00	0.E+00	2.E+03		Target Level:								1					176 198
VED HVD	- 99	0.E+00	6.E+00	8.E+01	6.E+00	0.E+00	2.E+03		Tarç								+					(ft) 132 154 176 1
DISSOL	44	0.E+00	7.E+00	8.E+01	7.E+00	0.E+00	2. E +03		50 Years				4						是主人		88 110	(ft)
	₹ 22	0.E+00	8.E+00	9.E+01	8.E+00	0.E+00	2.E+03	246) 246) 113	50 Y		,										44 66	
		0.E+00	2.E+01	9.E+01	2.E+01	0.E+00	2.E+03		Time:	1		000.06	80.000	60.000	50.000	40.000	30.000	20.000	10.000-	0.000	22	Plot All Data
Transverse Distance IM		06	45	0	- 45	06-	MASS	FCX	(mg/day)			ð		φ / 6ɯ) ፣							i	Piot) Plot Dat